Exact Recovery of Multichannel Sparse Blind Deconvolution via Gradient Descent

We study the multichannel sparse blind deconvolution (MCS-BD) problem, whose task is to simultaneously recover a kernel $a$ and multiple sparse inputs $\{x_i\}_{i=1}^p$ from their circulant convolu...

[1]  Yonina C. Eldar,et al.  Convolutional Phase Retrieval , 2017, NIPS.

[2]  João Marcos Travassos Romano,et al.  A fast algorithm for sparse multichannel blind deconvolution , 2016 .

[3]  Liam Paninski,et al.  Fast online deconvolution of calcium imaging data , 2016, PLoS Comput. Biol..

[4]  Guorong Wu,et al.  A blind deconvolution approach to recover effective connectivity brain networks from resting state fMRI data , 2012, Medical Image Anal..

[5]  S.C. Douglas,et al.  Multichannel blind deconvolution and equalization using the natural gradient , 1997, First IEEE Signal Processing Workshop on Signal Processing Advances in Wireless Communications.

[6]  Yoram Bresler,et al.  FIR perfect signal reconstruction from multiple convolutions: minimum deconvolver orders , 1998, IEEE Trans. Signal Process..

[7]  David Pfau,et al.  Simultaneous Denoising, Deconvolution, and Demixing of Calcium Imaging Data , 2016, Neuron.

[8]  Justin Romberg,et al.  Fast and Guaranteed Blind Multichannel Deconvolution Under a Bilinear System Model , 2016, IEEE Transactions on Information Theory.

[9]  A. Nehorai,et al.  Deconvolution methods for 3-D fluorescence microscopy images , 2006, IEEE Signal Processing Magazine.

[10]  Justin Romberg,et al.  Multichannel myopic deconvolution in underwater acoustic channels via low-rank recovery. , 2017, The Journal of the Acoustical Society of America.

[11]  John Wright,et al.  Finding a Sparse Vector in a Subspace: Linear Sparsity Using Alternating Directions , 2014, IEEE Transactions on Information Theory.

[12]  Holger Rauhut,et al.  A Mathematical Introduction to Compressive Sensing , 2013, Applied and Numerical Harmonic Analysis.

[13]  Yuejie Chi,et al.  Guaranteed Blind Sparse Spikes Deconvolution via Lifting and Convex Optimization , 2015, IEEE Journal of Selected Topics in Signal Processing.

[14]  A. Small,et al.  Fluorophore localization algorithms for super-resolution microscopy , 2014, Nature Methods.

[15]  Gilad Lerman,et al.  An Overview of Robust Subspace Recovery , 2018, Proceedings of the IEEE.

[16]  John Wright,et al.  Complete Dictionary Recovery Over the Sphere I: Overview and the Geometric Picture , 2015, IEEE Transactions on Information Theory.

[17]  Marie Frei,et al.  Decoupling From Dependence To Independence , 2016 .

[18]  Anthony Man-Cho So,et al.  Incremental Methods for Weakly Convex Optimization , 2019, ArXiv.

[19]  Anders P. Eriksson,et al.  Fast Convolutional Sparse Coding , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[20]  Dong Liang,et al.  Image reconstruction from phased-array data based on multichannel blind deconvolution. , 2015, Magnetic resonance imaging.

[21]  Yuxin Chen,et al.  Gradient descent with random initialization: fast global convergence for nonconvex phase retrieval , 2018, Mathematical Programming.

[22]  Laurent Demanet,et al.  Leveraging Diversity and Sparsity in Blind Deconvolution , 2016, IEEE Transactions on Information Theory.

[23]  Yuxin Chen,et al.  Nonconvex Optimization Meets Low-Rank Matrix Factorization: An Overview , 2018, IEEE Transactions on Signal Processing.

[24]  Pengcheng Zhou,et al.  Short-and-Sparse Deconvolution - A Geometric Approach , 2019, ICLR.

[25]  J. Burkey,et al.  WEAK SHARP MINIMA IN MATHEMATICAL PROGRAMMING , 1993 .

[26]  Jingdong Chen,et al.  Blind channel identification for speech dereverberation using l1-norm sparse learning , 2007, NIPS.

[27]  Robert M. Gray,et al.  Toeplitz and Circulant Matrices: A Review , 2005, Found. Trends Commun. Inf. Theory.

[28]  John Wright,et al.  Complete Dictionary Recovery Over the Sphere II: Recovery by Riemannian Trust-Region Method , 2015, IEEE Transactions on Information Theory.

[29]  Augustin Cosse,et al.  A note on the blind deconvolution of multiple sparse signals from unknown subspaces , 2017, Optical Engineering + Applications.

[30]  Thomas Strohmer,et al.  Self-calibration and biconvex compressive sensing , 2015, ArXiv.

[31]  John Wright,et al.  Efficient Dictionary Learning with Gradient Descent , 2018, ICML.

[32]  Sjoerd Dirksen,et al.  Tail bounds via generic chaining , 2013, ArXiv.

[33]  Yanjun Li,et al.  Identifiability in Blind Deconvolution With Subspace or Sparsity Constraints , 2015, IEEE Transactions on Information Theory.

[34]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[35]  Peyman Milanfar,et al.  Robust Multichannel Blind Deconvolution via Fast Alternating Minimization , 2012, IEEE Transactions on Image Processing.

[36]  Daniel P. Robinson,et al.  Noisy Dual Principal Component Pursuit , 2019, ICML.

[37]  Eric Moulines,et al.  Subspace methods for the blind identification of multichannel FIR filters , 1994, Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing.

[38]  Jean-Louis Goffin,et al.  On convergence rates of subgradient optimization methods , 1977, Math. Program..

[39]  Xiaodong Li,et al.  Phase Retrieval via Wirtinger Flow: Theory and Algorithms , 2014, IEEE Transactions on Information Theory.

[40]  Michael D. Mason,et al.  Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. , 2006, Biophysical journal.

[41]  Holger Rauhut,et al.  Suprema of Chaos Processes and the Restricted Isometry Property , 2012, ArXiv.

[42]  Yanjun Li,et al.  Global Geometry of Multichannel Sparse Blind Deconvolution on the Sphere , 2018, NeurIPS.

[43]  Yanning Zhang,et al.  Multi-image Blind Deblurring Using a Coupled Adaptive Sparse Prior , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[44]  Yanjun Li,et al.  Bilinear inverse problems with sparsity: optimal identifiability conditions and efficient recovery , 2018 .

[45]  Balas K. Natarajan,et al.  Sparse Approximate Solutions to Linear Systems , 1995, SIAM J. Comput..

[46]  Daniel P. Robinson,et al.  Dual Principal Component Pursuit: Improved Analysis and Efficient Algorithms , 2018, NeurIPS.

[47]  Felix Krahmer,et al.  Optimal Injectivity Conditions for Bilinear Inverse Problems with Applications to Identifiability of Deconvolution Problems , 2016, SIAM J. Appl. Algebra Geom..

[48]  Dmitriy Drusvyatskiy,et al.  Low-Rank Matrix Recovery with Composite Optimization: Good Conditioning and Rapid Convergence , 2019, Found. Comput. Math..

[49]  Yudong Chen,et al.  Harnessing Structures in Big Data via Guaranteed Low-Rank Matrix Estimation: Recent Theory and Fast Algorithms via Convex and Nonconvex Optimization , 2018, IEEE Signal Processing Magazine.

[50]  Thomas Strohmer,et al.  Self-Calibration and Bilinear Inverse Problems via Linear Least Squares , 2016, SIAM J. Imaging Sci..

[51]  Nathan Srebro,et al.  Implicit Regularization in Matrix Factorization , 2017, 2018 Information Theory and Applications Workshop (ITA).

[52]  Yu Bai,et al.  Subgradient Descent Learns Orthogonal Dictionaries , 2018, ICLR.

[53]  Yanjun Li,et al.  Blind Gain and Phase Calibration via Sparse Spectral Methods , 2017, IEEE Transactions on Information Theory.

[54]  Liming Wang,et al.  Blind Deconvolution From Multiple Sparse Inputs , 2016, IEEE Signal Processing Letters.

[55]  John Wright,et al.  Geometry and Symmetry in Short-and-Sparse Deconvolution , 2019, ICML.

[56]  Prateek Jain,et al.  Non-convex Optimization for Machine Learning , 2017, Found. Trends Mach. Learn..

[57]  Brendt Wohlberg,et al.  Convolutional Dictionary Learning: A Comparative Review and New Algorithms , 2017, IEEE Transactions on Computational Imaging.

[58]  T. Kailath,et al.  A least-squares approach to blind channel identification , 1995, IEEE Trans. Signal Process..

[59]  Yanjun Li,et al.  Identifiability in Bilinear Inverse Problems With Applications to Subspace or Sparsity-Constrained Blind Gain and Phase Calibration , 2017, IEEE Transactions on Information Theory.

[60]  Ruslan Salakhutdinov,et al.  Geometry of Optimization and Implicit Regularization in Deep Learning , 2017, ArXiv.

[61]  Kjetil F. Kaaresen,et al.  Multichannel blind deconvolution of seismic signals , 1998 .

[62]  John Wright,et al.  On the Global Geometry of Sphere-Constrained Sparse Blind Deconvolution , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[63]  Xiaodong Li,et al.  Rapid, Robust, and Reliable Blind Deconvolution via Nonconvex Optimization , 2016, Applied and Computational Harmonic Analysis.

[64]  Eero P. Simoncelli,et al.  A blind sparse deconvolution method for neural spike identification , 2011, NIPS.

[65]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[66]  Yuxin Chen,et al.  Implicit Regularization in Nonconvex Statistical Estimation: Gradient Descent Converges Linearly for Phase Retrieval, Matrix Completion, and Blind Deconvolution , 2017, Found. Comput. Math..

[67]  René Vidal,et al.  Dual Principal Component Pursuit , 2015, 2015 IEEE International Conference on Computer Vision Workshop (ICCVW).

[68]  Frederick R. Forst,et al.  On robust estimation of the location parameter , 1980 .

[69]  Felix Krahmer,et al.  Spectral Methods for Passive Imaging: Non-asymptotic Performance and Robustness , 2017, SIAM J. Imaging Sci..

[70]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.