Polynomial frames on the sphere

We introduce a class of polynomial frames suitable for analyzing data on the surface of the unit sphere of a Euclidean space. Our frames consist of polynomials, but are well localized, and are stable with respect to all the Lp norms. The frames belonging to higher and higher scale wavelet spaces have more and more vanishing moments.

[1]  Jochen Göttelmann,et al.  Locally Supported Wavelets on Manifolds with Applications to the 2D Sphere , 1999 .

[2]  Elias M. Stein Interpolation in polynomial classes and Markoff’s inequality , 1957 .

[3]  Michael Voit,et al.  An Uncertainty Principle for Ultraspherical Expansions , 1997 .

[4]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[5]  Pierre Vandergheynst,et al.  Wavelets on the n-sphere and related manifolds , 1998 .

[6]  J. Wells,et al.  Embeddings and Extensions in Analysis , 1975 .

[7]  A. Zygmund,et al.  A Remark on Conjugate Series , 1932 .

[8]  F. Smithies Linear Operators , 2019, Nature.

[9]  J. Ward,et al.  Norming Sets and Spherical Cubature Formulas X1. Norming Sets for Spherical Harmonics , 1998 .

[10]  Hrushikesh Narhar Mhaskar,et al.  Introduction to the theory of weighted polynomial approximation , 1997, Series in approximations and decompositions.

[11]  F. J. Narcowich,et al.  Nonstationary Wavelets on them-Sphere for Scattered Data , 1996 .

[12]  D. Healy,et al.  Computing Fourier Transforms and Convolutions on the 2-Sphere , 1994 .

[13]  Bruno Torrésani,et al.  Position-frequency analyis for signals defined on spheres , 1995, Signal Process..

[14]  Giuseppe Mastroianni,et al.  Weighted Polynomial Inequalities with Doubling and A∞ Weights , 2000 .

[15]  B. A. Taylor,et al.  Tangential Markov Inequalities Characterize Algebraic Submanifolds of R^n , 1995 .

[16]  Gabriele Steidl,et al.  Fast algorithms for discrete polynomial transforms , 1998, Math. Comput..

[17]  Willi Freeden,et al.  Spherical panel clustering and its numerical aspects , 1998 .

[18]  J. J. Seidel,et al.  Cubature Formulae, Polytopes, and Spherical Designs , 1981 .

[19]  Tamás Erdélyi,et al.  Notes on inequalities with doubling weights , 1999 .

[20]  R. Holmes Geometric Functional Analysis and Its Applications , 1975 .

[21]  Gabriele Steidl,et al.  Kernels of spherical harmonics and spherical frames , 1996 .

[22]  Kurt Jetter,et al.  Error estimates for scattered data interpolation on spheres , 1999, Math. Comput..

[23]  W. Freeden,et al.  Spherical wavelet transform and its discretization , 1996 .

[24]  Peter Schröder,et al.  Spherical wavelets: efficiently representing functions on the sphere , 1995, SIGGRAPH.

[25]  Joseph D. Ward,et al.  Wavelets Associated with Periodic Basis Functions , 1996 .

[26]  P. Petrushev Approximation by ridge functions and neural networks , 1999 .

[27]  H. N. Mhaskar,et al.  Polynomial Frames for the Detection of Singularities , 2000 .

[28]  Matthias Holschneider,et al.  Continuous wavelet transforms on the sphere , 1996 .

[29]  P. Vandergheynst,et al.  Wavelets on the 2-sphere: A group-theoretical approach , 1999 .

[30]  Hrushikesh Narhar Mhaskar,et al.  On a build-up polynomial frame for the detection of singularities , 1999 .

[31]  Willi Freeden,et al.  Constructive Approximation on the Sphere: With Applications to Geomathematics , 1998 .

[32]  Hrushikesh Narhar Mhaskar,et al.  Approximation properties of zonal function networks using scattered data on the sphere , 1999, Adv. Comput. Math..

[33]  H. Engels,et al.  Numerical Quadrature and Cubature , 1980 .