Improved Queue-Size Scaling for Input-Queued Switches via Graph Factorization

This paper studies the scaling of the expected total queue size in an $n\times n$ input-queued switch, as a function of both the load ρ and the system scale n. We provide a new class of scheduling policies under which the expected total queue size scales as Ołeft( n(1-ρ)^-4/3 łog łeft(\max\\frac1 1-ρ, n\ \right)\right)$, over all n and ρ<1$, when the arrival rates are uniform. This improves over the previously best-known scalings in two regimes: Ołeft(n^1.5 (1-ρ)^-1 łog \frac1 1-ρ \right)$ when Ømega(n^-1.5 ) łe 1-ρ łe O(n^-1 )$ and $Ołeft(\fracnłog n (1-ρ)^2 \right)$ when $1-ρ \geq Ømega(n^-1 ). A key ingredient in our method is a tight characterization of the largest k-factor of a random bipartite multigraph, which may be of independent interest.

[1]  Nick McKeown,et al.  pFabric: minimal near-optimal datacenter transport , 2013, SIGCOMM.

[2]  J. Harrison Brownian models of open processing networks: canonical representation of workload , 2000 .

[3]  Jonathan Novak Truncations of Random Unitary Matrices and Young Tableaux , 2007, Electron. J. Comb..

[4]  A. Stolyar MaxWeight scheduling in a generalized switch: State space collapse and workload minimization in heavy traffic , 2004 .

[5]  M. J. Harrison Correction: Brownian models of open processing networks: canonical representation of workload Brownian models of open processing networks: canonical representation of workload , 2003 .

[6]  John N. Tsitsiklis,et al.  On Queue-Size Scaling for Input-Queued Switches , 2014, ArXiv.

[7]  Lei Ying,et al.  Communication Networks - An Optimization, Control, and Stochastic Networks Perspective , 2014 .

[8]  Eytan Modiano,et al.  Logarithmic Delay for $N \times N$ Packet Switches Under the Crossbar Constraint , 2007, IEEE/ACM Transactions on Networking.

[9]  Refael Hassin,et al.  Probabilistic Analysis of the Capacitated Transportation Problem , 1988, Math. Oper. Res..

[10]  H. Ryser Combinatorial Properties of Matrices of Zeros and Ones , 1957, Canadian Journal of Mathematics.

[11]  Michael D. Plummer,et al.  Graph factors and factorization: 1985-2003: A survey , 2007, Discret. Math..

[12]  秋山 仁,et al.  Factors and factorizations of graphs : proof techniques in factor theory , 2011 .

[13]  J. G. Dai,et al.  Maximum Pressure Policies in Stochastic Processing Networks , 2005, Oper. Res..

[14]  John N. Tsitsiklis,et al.  Optimal scaling of average queue sizes in an input-queued switch: an open problem , 2011, Queueing Syst. Theory Appl..

[15]  Y. Zhong,et al.  Improved Queue-Size Scaling for Input-Queued Switches via Graph Factorization , 2019, SIGMETRICS.

[16]  Nick McKeown,et al.  A Starvation-free Algorithm For Achieving 100% Throughput in an Input- Queued Switch , 1999 .

[17]  Leandros Tassiulas,et al.  Stability properties of constrained queueing systems and scheduling policies for maximum throughput in multihop radio networks , 1990, 29th IEEE Conference on Decision and Control.

[18]  R. Srikant,et al.  Queue Length Behavior in a Switch under the MaxWeight Algorithm , 2015 .

[19]  D. R. Fulkerson,et al.  Maximal Flow Through a Network , 1956 .

[20]  Nick McKeown,et al.  Analysis of scheduling algorithms that provide 100% throughput in input-queued switches , 2001 .

[21]  F. Chung,et al.  Complex Graphs and Networks , 2006 .

[22]  Béla Csaba Regular Spanning Subgraphs of Bipartite Graphs of High Minimum Degree , 2007, Electron. J. Comb..

[23]  Marco Ajmone Marsan,et al.  Bounds on average delays and queue size averages and variances in input-queued cell-based switches , 2001, Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213).

[24]  Devavrat Shah,et al.  Fastpass: a centralized "zero-queue" datacenter network , 2015, SIGCOMM 2015.

[25]  Ion Stoica,et al.  Efficient coflow scheduling with Varys , 2015, SIGCOMM.

[26]  Jin Akiyama,et al.  Factors and Factorizations of Graphs: Proof Techniques in Factor Theory , 2011 .

[27]  E. Upfal,et al.  On factors in random graphs , 1981 .

[28]  D. Gale A theorem on flows in networks , 1957 .

[29]  R. J. Williams,et al.  Fluid model for a network operating under a fair bandwidth-sharing policy , 2004, math/0407057.

[30]  Jin Akiyama,et al.  Factors and Factorizations of Graphs , 2011 .

[31]  Devavrat Shah,et al.  Delay bounds for approximate maximum weight matching algorithms for input queued switches , 2002, Proceedings.Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies.

[32]  Gustavo de Veciana,et al.  Stability and performance analysis of networks supporting elastic services , 2001, TNET.

[33]  Balaji Prabhakar,et al.  The throughput of data switches with and without speedup , 2000, Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No.00CH37064).