Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0

Over the past decade, a growing community of researchers has emerged around the use of constraint-based reconstruction and analysis (COBRA) methods to simulate, analyze and predict a variety of metabolic phenotypes using genome-scale models. The COBRA Toolbox, a MATLAB package for implementing COBRA methods, was presented earlier. Here we present a substantial update of this in silico toolbox. Version 2.0 of the COBRA Toolbox expands the scope of computations by including in silico analysis methods developed since its original release. New functions include (i) network gap filling, (ii) (13)C analysis, (iii) metabolic engineering, (iv) omics-guided analysis and (v) visualization. As with the first version, the COBRA Toolbox reads and writes systems biology markup language-formatted models. In version 2.0, we improved performance, usability and the level of documentation. A suite of test scripts can now be used to learn the core functionality of the toolbox and validate results. This toolbox lowers the barrier of entry to use powerful COBRA methods.

[1]  B. Palsson,et al.  Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110 , 1994, Applied and environmental microbiology.

[2]  Susumu Goto,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 2000, Nucleic Acids Res..

[3]  R. Crystal,et al.  Overexpression of apoptotic cell removal receptor MERTK in alveolar macrophages of cigarette smokers. , 2008, American journal of respiratory cell and molecular biology.

[4]  F. Blattner,et al.  In silico design and adaptive evolution of Escherichia coli for production of lactic acid. , 2005, Biotechnology and bioengineering.

[5]  U. Sauer,et al.  High-throughput metabolic flux analysis based on gas chromatography-mass spectrometry derived 13C constraints. , 2004, Analytical biochemistry.

[6]  A. Barabasi,et al.  Global organization of metabolic fluxes in the bacterium Escherichia coli , 2004, Nature.

[7]  Intawat Nookaew,et al.  The genome-scale metabolic model iIN800 of Saccharomyces cerevisiae and its validation: a scaffold to query lipid metabolism , 2008, BMC Syst. Biol..

[8]  Nicola Zamboni,et al.  FiatFlux – a software for metabolic flux analysis from 13C-glucose experiments , 2005, BMC Bioinformatics.

[9]  J. Liao,et al.  Transcriptional regulation and metabolism , 2005 .

[10]  B. Palsson,et al.  Candidate Metabolic Network States in Human Mitochondria , 2005, Journal of Biological Chemistry.

[11]  Yudi Yang,et al.  Genome-scale in silico aided metabolic analysis and flux comparisons of Escherichia coli to improve succinate production , 2006, Applied Microbiology and Biotechnology.

[12]  B. Palsson,et al.  Genome-scale models of microbial cells: evaluating the consequences of constraints , 2004, Nature Reviews Microbiology.

[13]  Evangelos Simeonidis,et al.  Flux balance analysis: a geometric perspective. , 2009, Journal of theoretical biology.

[14]  U. Sauer,et al.  Metabolic functions of duplicate genes in Saccharomyces cerevisiae. , 2005, Genome research.

[15]  Jan Schellenberger,et al.  Use of Randomized Sampling for Analysis of Metabolic Networks* , 2009, Journal of Biological Chemistry.

[16]  L. Nielsen,et al.  Modeling Hybridoma Cell Metabolism Using a Generic Genome‐Scale Metabolic Model of Mus musculus , 2008, Biotechnology progress.

[17]  Jason A. Papin,et al.  The JAK-STAT signaling network in the human B-cell: an extreme signaling pathway analysis. , 2004, Biophysical journal.

[18]  Markus J. Herrgård,et al.  Network-based prediction of human tissue-specific metabolism , 2008, Nature Biotechnology.

[19]  Hiroaki Kitano,et al.  The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models , 2003, Bioinform..

[20]  Anne Kümmel,et al.  In silico genome-scale reconstruction and validation of the Staphylococcus aureus metabolic network. , 2005, Biotechnology and bioengineering.

[21]  Sang Yup Lee,et al.  The genome sequence of the capnophilic rumen bacterium Mannheimia succiniciproducens , 2004, Nature Biotechnology.

[22]  Peer Bork,et al.  Is there biological research beyond Systems Biology? A comparative analysis of terms , 2005, Molecular systems biology.

[23]  Stephen S Fong,et al.  Metabolic gene–deletion strains of Escherichia coli evolve to computationally predicted growth phenotypes , 2004, Nature Genetics.

[24]  Kalidas Yeturu,et al.  targetTB: A target identification pipeline for Mycobacterium tuberculosis through an interactome, reactome and genome-scale structural analysis , 2008, BMC Systems Biology.

[25]  R. Mahadevan,et al.  The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. , 2003, Metabolic engineering.

[26]  B. Palsson,et al.  Systems approach to refining genome annotation , 2006, Proceedings of the National Academy of Sciences.

[27]  Markus J. Herrgård,et al.  Integrating high-throughput and computational data elucidates bacterial networks , 2004, Nature.

[28]  Gary D Bader,et al.  Global Mapping of the Yeast Genetic Interaction Network , 2004, Science.

[29]  V. Schachter,et al.  Genome-scale models of bacterial metabolism: reconstruction and applications , 2008, FEMS microbiology reviews.

[30]  Monica L. Mo,et al.  Global reconstruction of the human metabolic network based on genomic and bibliomic data , 2007, Proceedings of the National Academy of Sciences.

[31]  Markus J. Herrgård,et al.  Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. , 2004, Genome research.

[32]  Susumu Goto,et al.  The KEGG resource for deciphering the genome , 2004, Nucleic Acids Res..

[33]  Michael Hucka,et al.  LibSBML: an API Library for SBML , 2008, Bioinform..

[34]  B. Palsson,et al.  Uniform sampling of steady-state flux spaces: means to design experiments and to interpret enzymopathies. , 2004, Biophysical journal.

[35]  Adam M. Feist,et al.  The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli , 2008, Nature Biotechnology.

[36]  Orland R. Gonzalez,et al.  Reconstruction, modeling & analysis of Halobacterium salinarum R-1 metabolism. , 2008, Molecular bioSystems.

[37]  B. Palsson,et al.  Genome-scale in silico models of E. coli have multiple equivalent phenotypic states: assessment of correlated reaction subsets that comprise network states. , 2004, Genome research.

[38]  Steffen Klamt,et al.  FluxAnalyzer: exploring structure, pathways, and flux distributions in metabolic networks on interactive flux maps , 2003, Bioinform..

[39]  Matthew D. Jankowski,et al.  Genome-scale thermodynamic analysis of Escherichia coli metabolism. , 2006, Biophysical journal.

[40]  B. Palsson,et al.  Towards multidimensional genome annotation , 2006, Nature Reviews Genetics.

[41]  Jason A. Papin,et al.  Reconstruction of cellular signalling networks and analysis of their properties , 2005, Nature Reviews Molecular Cell Biology.

[42]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[43]  Ziv Bar-Joseph,et al.  Impact of the solvent capacity constraint on E. coli metabolism , 2008, BMC Systems Biology.

[44]  Bernhard O. Palsson,et al.  A genome-scale metabolic reconstruction of Pseudomonas putida KT2440: iJN746 as a cell factory , 2008, BMC Systems Biology.

[45]  Jens Nielsen,et al.  Reconstruction of the central carbon metabolism of Aspergillus niger. , 2003, European journal of biochemistry.

[46]  Bernhard O. Palsson,et al.  Context-Specific Metabolic Networks Are Consistent with Experiments , 2008, PLoS Comput. Biol..

[47]  G. Stephanopoulos,et al.  Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. , 2005, Metabolic engineering.

[48]  Michael Hucka,et al.  SBMLToolbox: an SBML toolbox for MATLAB users , 2006, Bioinform..

[49]  Jens Nielsen,et al.  Evolutionary programming as a platform for in silico metabolic engineering , 2005, BMC Bioinformatics.

[50]  Vinay Satish Kumar,et al.  Optimization based automated curation of metabolic reconstructions , 2007, BMC Bioinformatics.

[51]  Bas Teusink,et al.  Co-Regulation of Metabolic Genes Is Better Explained by Flux Coupling Than by Network Distance , 2008, PLoS Comput. Biol..

[52]  Bernhard Palsson,et al.  Two-dimensional annotation of genomes , 2004, Nature Biotechnology.

[53]  B. Palsson,et al.  An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR) , 2003, Genome Biology.

[54]  G. Stephanopoulos,et al.  Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions. , 2007, Metabolic engineering.

[55]  Jason A. Papin,et al.  Comparison of network-based pathway analysis methods. , 2004, Trends in biotechnology.

[56]  H. J. Greenberg,et al.  Monte Carlo sampling can be used to determine the size and shape of the steady-state flux space. , 2004, Journal of theoretical biology.

[57]  E. Waygood,et al.  The control of pyruvate kinases of Escherichia coli. I. Physicochemical and regulatory properties of the enzyme activated by fructose 1,6-diphosphate. , 1974, The Journal of biological chemistry.

[58]  B. Palsson,et al.  Metabolic capabilities of Escherichia coli: I. synthesis of biosynthetic precursors and cofactors. , 1993, Journal of theoretical biology.

[59]  W. Wiechert,et al.  Bidirectional reaction steps in metabolic networks: III. Explicit solution and analysis of isotopomer labeling systems. , 1999, Biotechnology and bioengineering.

[60]  B. Palsson,et al.  Genome-scale reconstruction of the metabolic network in Staphylococcus aureus N315: an initial draft to the two-dimensional annotation , 2005, BMC Microbiology.

[61]  G. Church,et al.  Analysis of optimality in natural and perturbed metabolic networks , 2002 .

[62]  Adam M. Feist,et al.  A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information , 2007, Molecular systems biology.

[63]  A. Burgard,et al.  Optknock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization , 2003, Biotechnology and bioengineering.