Mathematically strong subsystems of analysis with low rate of growth of provably recursive functionals

This paper is the first one in a sequel of papers resulting from the authors Habilitationsschrift [22] which are devoted to determine the growth in proofs of standard parts of analysis. A hierarchy (GnA )n∈IN of systems of arithmetic in all finite types is introduced whose definable objects of type 1 = 0(0) correspond to the Grzegorczyk hierarchy of primitive recursive functions. We establish the following extraction rule for an extension of GnA ω by quantifier–free choice AC–qf and analytical axioms Γ having the form ∀x∃y ≤ρ sx∀z F0 (including also a ‘non– standard’ axiom F which does not hold in the full set–theoretic model but in the strongly majorizable functionals): From a proof GnA +AC–qf + Γ ⊢ ∀u, k∀v ≤τ tuk∃w A0(u, k, v, w) one can extract a uniform bound Φ such that ∀u, k∀v ≤τ tuk∃w ≤ ΦukA0(u, k, v, w) holds in the full set–theoretic type structure. In case n = 2 (resp. n = 3) Φuk is a polynomial (resp. an elementary recursive function) in k, u := λx.max(u0, . . . , ux). In the present paper we show that for n ≥ 2, GnA +AC–qf+F proves a generalization of the binary Konig’s lemma yielding new conservation results since the conclusion of the above rule can be verified in Gmax(3,n)A ω in this case. In a subsequent paper we will show that many important ineffective analytical principles and theorems can be proved already in G2A +AC–qf+Γ for suitable Γ.

[1]  Anne Sjerp Troelstra,et al.  Note on the fan theorem , 1974, Journal of Symbolic Logic.

[2]  Fachbereich Mathematik,et al.  A note on the Π 02 – induction rule ∗ , 1995 .

[3]  H. Luckhardt Extensional Gödel Functional Interpretation , 1973 .

[4]  S. C. Kleene Recursive functionals and quantifiers of finite types revisited. V , 1991 .

[5]  S. C. Kleene,et al.  Introduction to Metamathematics , 1952 .

[6]  Ulrich Kohlenbach,et al.  Effective bounds from ineffective proofs in analysis: An application of functional interpretation and majorization , 1992, Journal of Symbolic Logic.

[7]  A. Nerode,et al.  Review: S. C. Kleene, Recursive Functionals and Quantifiers of Finite Types I , 1962 .

[8]  Petr Hájek,et al.  On some formalized conservation results in arithmetic , 1990, Arch. Math. Log..

[9]  Ulrich Kohlenbach,et al.  Approximation , 2018, Passive, Active, and Digital Filters.

[10]  Robert W. Ritchie,et al.  Classes of recursive functions based on Ackermann’s function , 1965 .

[11]  G. E. Mints What can be done with PRA? , 1980 .

[12]  Ulrich Kohlenbach Remarks on Herbrand normal forms and Herbrand realizations , 1992, Arch. Math. Log..

[13]  A. Troelstra Metamathematical investigation of intuitionistic arithmetic and analysis , 1973 .

[14]  Ulrich KohlenbachFachbereich Mathematik Analyzing proofs in analysis , 1993 .

[15]  Solomon Feferman,et al.  Theories of Finite Type Related to Mathematical Practice , 1977 .

[16]  H. Keisler,et al.  Handbook of mathematical logic , 1977 .

[17]  Von Kurt Gödel,et al.  ÜBER EINE BISHER NOCH NICHT BENÜTZTE ERWEITERUNG DES FINITEN STANDPUNKTES , 1958 .

[18]  Ulrich Kohlenbach,et al.  Pointwise hereditary majorization and some applications , 1992, Arch. Math. Log..

[19]  A. Grzegorczyk Some classes of recursive functions , 1964 .

[20]  Rohit Parikh,et al.  Existence and feasibility in arithmetic , 1971, Journal of Symbolic Logic.

[21]  Wilfried Sieg,et al.  Fragments of arithmetic , 1985, Ann. Pure Appl. Log..

[22]  U. Kohlenbach Analysing proofs in analysis , 1996 .

[23]  Marc Bezem,et al.  Strongly majorizable functionals of finite type: A model for barrecursion containing discontinuous functionals , 1985, Journal of Symbolic Logic.

[24]  Jeremy Avigad Formalizing Forcing Arguments in Subsystems of Second-Order Arithmetic , 1996, Ann. Pure Appl. Log..

[25]  Ulrich Kohlenbach,et al.  Effective Moduli from Ineffective Uniqueness Proofs. An Unwinding of de La Vallée Poussin's Proof for Chebycheff Approximation , 1993, Ann. Pure Appl. Log..

[26]  Ker-I Ko,et al.  Complexity Theory of Real Functions , 1991, Progress in Theoretical Computer Science.

[27]  Fernando Ferreira,et al.  A feasible theory for analysis , 1994, Journal of Symbolic Logic.

[28]  G. Hasenjaeger Review: Kurt Godel, Uber eine Bisher noch nicht Benutzte Erweiterung des Finiten Standpunktes , 1960 .

[29]  Wenhui Zhang Cut Elimination and Automatic Proof Procedures , 1991, Theor. Comput. Sci..

[30]  C. Smorynski Logical Number Theory I , 1991 .

[31]  S. C. Kleene,et al.  Recursive functionals and quantifiers of finite types. II , 1959 .

[32]  Walter Felscher Berechenbarkeit - rekursive und programmierbare Funktionen , 1993, Springer-Lehrbuch.

[33]  H. Luckhardt Extensional Godel functional interpretation;: A consistency proof of classical analysis , 1973 .

[34]  Petr Hájek,et al.  Metamathematics of First-Order Arithmetic , 1993, Perspectives in mathematical logic.

[35]  Wilfried Sieg Herbrand analyses , 1991, Arch. Math. Log..

[36]  W. Ackermann Zum Hilbertschen Aufbau der reellen Zahlen , 1928 .