Database Query Processing Using Finite Cursor Machines

We introduce a new abstract model of database query processing, finite cursor machines, that incorporates certain data streaming aspects. The model describes quite faithfully what happens in so-called “one-pass” and “two-pass query processing”. Technically, the model is described in the framework of abstract state machines. Our main results are upper and lower bounds for processing relational algebra queries in this model, specifically, queries of the semijoin fragment of the relational algebra.

[1]  S. Muthukrishnan,et al.  Data streams: algorithms and applications , 2005, SODA '03.

[2]  Michael J. Franklin,et al.  Efficient Filtering of XML Documents for Selective Dissemination of Information , 2000, VLDB.

[3]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[4]  Dan Suciu,et al.  Stream processing of XPath queries with predicates , 2003, SIGMOD '03.

[5]  Jennifer Widom,et al.  Database System Implementation , 2000 .

[6]  Nicole Schweikardt,et al.  Tight lower bounds for query processing on streaming and external memory data , 2005, Theor. Comput. Sci..

[7]  Eugene J. Shekita,et al.  Fundamental techniques for order optimization , 1996, SIGMOD '96.

[8]  Jan Van den Bussche Finite Cursor Machines in Database Query Processing , 2004, Abstract State Machines.

[9]  Jennifer Widom,et al.  Models and issues in data stream systems , 2002, PODS.

[10]  Juraj Hromkovic,et al.  One-way multihead deterministic finite automata , 1983, Acta Informatica.

[11]  Noga Alon,et al.  The Space Complexity of Approximating the Frequency Moments , 1999 .

[12]  Jan Van den Bussche,et al.  The Semijoin Algebra and the Guarded Fragment , 2004, J. Log. Lang. Inf..

[13]  Leonid Libkin,et al.  Elements Of Finite Model Theory (Texts in Theoretical Computer Science. An Eatcs Series) , 2004 .

[14]  Jan Van den Bussche,et al.  On the complexity of division and set joins in the relational algebra , 2005, PODS '05.

[15]  Carlo Zaniolo,et al.  Query Languages and Data Models for Database Sequences and Data Streams , 2004, VLDB.

[16]  Jörg Flum,et al.  Parameterized Complexity Theory (Texts in Theoretical Computer Science. An EATCS Series) , 2006 .

[17]  Leonid Libkin,et al.  Elements of Finite Model Theory , 2004, Texts in Theoretical Computer Science.

[18]  Jan Van den Bussche,et al.  On the expressive power of semijoin queries , 2003, Inf. Process. Lett..

[19]  Nicole Schweikardt,et al.  Lower bounds for sorting with few random accesses to external memory , 2005, PODS.

[20]  Yuri Gurevich,et al.  Sequential abstract-state machines capture sequential algorithms , 2000, TOCL.

[21]  Marcus Fontoura,et al.  On the memory requirements of XPath evaluation over XML streams , 2004, PODS.

[22]  Dan Suciu,et al.  Processing XML Streams with Deterministic Automata , 2003, ICDT.

[23]  Mayur Datar,et al.  On the streaming model augmented with a sorting primitive , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[24]  Marcus Fontoura,et al.  Buffering in query evaluation over XML streams , 2005, PODS '05.

[25]  Sudarshan S. Chawathe,et al.  XPath queries on streaming data , 2003, SIGMOD '03.

[26]  Prabhakar Raghavan,et al.  Computing on data streams , 1999, External Memory Algorithms.

[27]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[28]  Rajeev Rastogi,et al.  Efficient filtering of XML documents with XPath expressions , 2002, The VLDB Journal.

[29]  Mihalis Yannakakis,et al.  Algorithms for Acyclic Database Schemes , 1981, VLDB.

[30]  Yuri Gurevich,et al.  Evolving algebras 1993: Lipari guide , 1995, Specification and validation methods.

[31]  Arnold L. Rosenberg On multi-head finite automata , 1965, SWCT.

[32]  Lauri Hella,et al.  Logics with aggregate operators , 2001, JACM.

[33]  Ronald Fagin,et al.  Degrees of acyclicity for hypergraphs and relational database schemes , 1983, JACM.