BENCHOP – SLV: the BENCHmarking project in Option Pricing – Stochastic and Local Volatility problems
暂无分享,去创建一个
Elisabeth Larsson | Cornelis W. Oosterlee | Álvaro Leitao | Shashi Jain | Lina von Sydow | Magnus Wiktorsson | Johan Waldén | Karel J. in 't Hout | Victor Shcherbakov | Slobodan Milovanovic | Maarten Wyns | Tinne Haentjens | J. Waldén | E. Larsson | M. Wiktorsson | C. Oosterlee | V. Shcherbakov | K. I. '. Hout | Shashi Jain | S. Milovanovic | Álvaro Leitao | L. Sydow | Maarten Wyns | T. Haentjens | K. I. Hout
[1] Erik Lindström,et al. Sequential calibration of options , 2008, Comput. Stat. Data Anal..
[2] Colin Rose. Computational Statistics , 2011, International Encyclopedia of Statistical Science.
[3] P. Hagan,et al. MANAGING SMILE RISK , 2002 .
[4] Bengt Fornberg,et al. On the role of polynomials in RBF-FD approximations: II. Numerical solution of elliptic PDEs , 2017, J. Comput. Phys..
[5] Karel J. in 't Hout,et al. An adjoint method for the exact calibration of stochastic local volatility models , 2016, J. Comput. Sci..
[6] Kyoung-Sook Moon. EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS , 2008 .
[7] W. Feller. TWO SINGULAR DIFFUSION PROBLEMS , 1951 .
[8] Elisabeth Larsson,et al. A Radial Basis Function Partition of Unity Collocation Method for Convection–Diffusion Equations Arising in Financial Applications , 2015, J. Sci. Comput..
[9] Bengt Fornberg,et al. On the role of polynomials in RBF-FD approximations: I. Interpolation and accuracy , 2016, J. Comput. Phys..
[10] J. Witteveen,et al. The stochastic collocation Monte Carlo sampler: highly efficient sampling from ‘expensive’ distributions , 2018, Quantitative Finance.
[11] Mark Broadie,et al. Exact Simulation of Stochastic Volatility and Other Affine Jump Diffusion Processes , 2006, Oper. Res..
[12] K. I. '. Hout,et al. ADI finite difference schemes for option pricing in the Heston model with correlation , 2008, 0811.3427.
[13] Victor Shcherbakov,et al. Pricing Derivatives under Multiple Stochastic Factors by Localized Radial Basis Function Methods , 2017, ArXiv.
[14] Roger Lee. Option Pricing by Transform Methods: Extensions, Unification, and Error Control , 2004 .
[15] FornbergBengt,et al. On the role of polynomials in RBF-FD approximations , 2016 .
[16] Bruno Welfert,et al. Unconditional stability of second-order ADI schemes applied to multi-dimensional diffusion equations with mixed derivative terms , 2009 .
[17] Tinne Haentjens,et al. Alternating direction implicit finite difference schemes for the Heston-Hull-White partial differential equation , 2012 .
[18] Johan Tysk,et al. Boundary conditions for the single-factor term structure equation , 2011, 1101.1149.
[19] Lina von Sydow,et al. Radial Basis Function generated Finite Differences for option pricing problems , 2017, Comput. Math. Appl..
[20] Elisabeth Larsson,et al. Radial basis function partition of unity methods for pricing vanilla basket options , 2016, Comput. Math. Appl..
[21] V. Shcherbakov. Radial basis function partition of unity operator splitting method for pricing multi-asset American options , 2016 .
[22] Gene H. Golub,et al. Calculation of Gauss quadrature rules , 1967, Milestones in Matrix Computation.
[23] S. Heston. A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .
[24] V. Lucic. Boundary conditions for computing densities in hybrid models via PDE methods , 2008 .
[25] Leif Andersen. Simple and efficient simulation of the Heston stochastic volatility model , 2008 .
[26] Jonas Persson,et al. BENCHOP – The BENCHmarking project in option pricing† , 2015, Int. J. Comput. Math..
[27] Geof H. Givens,et al. Computational Statistics: Givens/Computational Statistics , 2012 .
[28] Cornelis W. Oosterlee,et al. The Stochastic Grid Bundling Method: Efficient Pricing of Bermudan Options and their Greeks , 2013, Appl. Math. Comput..
[29] Alexander Lipton,et al. Pricing of vanilla and first-generation exotic options in the local stochastic volatility framework: survey and new results , 2013, 1312.5693.
[30] Cornelis W. Oosterlee,et al. On an efficient multiple time step Monte Carlo simulation of the SABR model , 2016 .
[31] Bin Chen,et al. A LOW-BIAS SIMULATION SCHEME FOR THE SABR STOCHASTIC VOLATILITY MODEL , 2012 .
[32] Michael B. Giles,et al. Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..
[33] Cornelis W. Oosterlee,et al. Monte Carlo Calculation of Exposure Profiles and Greeks for Bermudan and Barrier Options under the Heston Hull-White Model , 2014 .
[34] Martin Vohralík,et al. Algebraic and Discretization Error Estimation by Equilibrated Fluxes for Discontinuous Galerkin Methods on Nonmatching Grids , 2015, J. Sci. Comput..
[35] Cornelis W. Oosterlee,et al. On the Heston Model with Stochastic Interest Rates , 2010, SIAM J. Financial Math..