Variational quantum algorithms

[1]  Harper R. Grimsley,et al.  Qubit-ADAPT-VQE: An Adaptive Algorithm for Constructing Hardware-Efficient Ansätze on a Quantum Processor , 2021, PRX Quantum.

[2]  Y. Yordanov,et al.  Iterative qubit-excitation based variational quantum eigensolver , 2021 .

[3]  Patrick J. Coles,et al.  Cost function dependent barren plateaus in shallow parametrized quantum circuits , 2021, Nature Communications.

[4]  Yudong Cao,et al.  Minimizing Estimation Runtime on Noisy Quantum Computers , 2021, PRX Quantum.

[5]  Patrick J. Coles,et al.  A semi-agnostic ansatz with variable structure for quantum machine learning , 2021, ArXiv.

[6]  Patrick J. Coles,et al.  Long-time simulations with high fidelity on quantum hardware , 2021, ArXiv.

[7]  M. Kliesch,et al.  Training Variational Quantum Algorithms Is NP-Hard. , 2021, Physical review letters.

[8]  John Preskill,et al.  Information-theoretic bounds on quantum advantage in machine learning , 2021, Physical review letters.

[9]  Patrick J. Coles,et al.  Connecting ansatz expressibility to gradient magnitudes and barren plateaus , 2021, PRX Quantum.

[10]  S. Bravyi,et al.  Obstacles to Variational Quantum Optimization from Symmetry Protection. , 2020, Physical review letters.

[11]  Xin Wang,et al.  Noise-Assisted Quantum Autoencoder , 2020, 2012.08331.

[12]  Jian-Wei Pan,et al.  Quantum computational advantage using photons , 2020, Science.

[13]  Matthias Degroote,et al.  Natural Evolutionary Strategies for Variational Quantum Computation , 2020, Mach. Learn. Sci. Technol..

[14]  M. Cerezo,et al.  Effect of barren plateaus on gradient-free optimization , 2020, Quantum.

[15]  J. Biamonte,et al.  On barren plateaus and cost function locality in variational quantum algorithms , 2020, Journal of Physics A: Mathematical and Theoretical.

[16]  Annie E. Paine,et al.  Solving nonlinear differential equations with differentiable quantum circuits , 2020, Physical Review A.

[17]  M. Cerezo,et al.  Optimizing parametrized quantum circuits via noise-induced breaking of symmetries , 2020, ArXiv.

[18]  Ryan Babbush,et al.  Virtual Distillation for Quantum Error Mitigation , 2020, Physical Review X.

[19]  Liu Liu,et al.  Toward Trainability of Quantum Neural Networks. , 2020, 2011.06258.

[20]  Kishor Bharti,et al.  Quantum Assisted Simulator , 2020, 2011.06911.

[21]  Bálint Koczor,et al.  Exponential Error Suppression for Near-Term Quantum Devices , 2020, Physical Review X.

[22]  M. Yung,et al.  Low-Depth Hamiltonian Simulation by an Adaptive Product Formula. , 2020, Physical review letters.

[23]  Arthur Pesah,et al.  Absence of Barren Plateaus in Quantum Convolutional Neural Networks , 2020, Physical Review X.

[24]  Patrick J. Coles,et al.  Unified approach to data-driven quantum error mitigation , 2020, Physical Review Research.

[25]  Xiao Yuan,et al.  Hybrid Quantum-Classical Algorithms and Quantum Error Mitigation , 2020, Journal of the Physical Society of Japan.

[26]  K. Ho,et al.  Adaptive Variational Quantum Dynamics Simulations , 2020, PRX Quantum.

[27]  Stefan Woerner,et al.  The power of quantum neural networks , 2020, Nature Computational Science.

[28]  Nathan Wiebe,et al.  Entanglement Induced Barren Plateaus , 2020, PRX Quantum.

[29]  Patrick J. Coles,et al.  Variational quantum algorithm for estimating the quantum Fisher information , 2020, Physical Review Research.

[30]  D. Tao,et al.  Quantum circuit architecture search: error mitigation and trainability enhancement for variational quantum solvers , 2020, ArXiv.

[31]  Jacob Biamonte,et al.  Abrupt transitions in variational quantum circuit training , 2020, Physical Review A.

[32]  Frederic T. Chong,et al.  Adaptive Circuit Learning for Quantum Metrology , 2020, 2021 IEEE International Conference on Quantum Computing and Engineering (QCE).

[33]  Chang-Yu Hsieh,et al.  Differentiable quantum architecture search , 2020, Quantum Science and Technology.

[34]  Kishor Bharti,et al.  Iterative quantum-assisted eigensolver , 2020, Physical Review A.

[35]  Patrick J. Coles,et al.  Barren Plateaus Preclude Learning Scramblers. , 2020, Physical review letters.

[36]  Valentin Kasper,et al.  Fate of Lattice Gauge Theories Under Decoherence , 2020, 2009.07848.

[37]  Matthew D. Grace,et al.  From Pulses to Circuits and Back Again: A Quantum Optimal Control Perspective on Variational Quantum Algorithms , 2020, 2009.06702.

[38]  Raul Garcia-Patron,et al.  Limitations of optimization algorithms on noisy quantum devices , 2020, Nature Physics.

[39]  Patrick J. Coles,et al.  Correlation-Informed Permutation of Qubits for Reducing Ansatz Depth in the Variational Quantum Eigensolver , 2020, PRX Quantum.

[40]  Patrick J. Coles,et al.  Variational Hamiltonian Diagonalization for Dynamical Quantum Simulation , 2020, 2009.02559.

[41]  S. Benjamin,et al.  Quantum analytic descent , 2020, Physical Review Research.

[42]  Luca Dellantonio,et al.  Simulating 2D Effects in Lattice Gauge Theories on a Quantum Computer , 2020, PRX Quantum.

[43]  Masoud Mohseni,et al.  Low-Depth Mechanisms for Quantum Optimization , 2020, PRX Quantum.

[44]  Maria Schuld,et al.  Effect of data encoding on the expressive power of variational quantum-machine-learning models , 2020, Physical Review A.

[45]  Patrick J. Coles,et al.  Higher order derivatives of quantum neural networks with barren plateaus , 2020, Quantum Science and Technology.

[46]  Patrick J. Coles,et al.  Impact of Barren Plateaus on the Hessian and Higher Order Derivatives. , 2020 .

[47]  R. Israel,et al.  Error mitigation on a near-term quantum photonic device , 2020, Quantum.

[48]  N. Killoran,et al.  Estimating the gradient and higher-order derivatives on quantum hardware , 2020, 2008.06517.

[49]  Yvette de Sereville,et al.  Exploring entanglement and optimization within the Hamiltonian Variational Ansatz , 2020, PRX Quantum.

[50]  Patrick Huembeli,et al.  Characterizing the loss landscape of variational quantum circuits , 2020, Quantum Science and Technology.

[51]  A. Blais,et al.  Quantum-optimal-control-inspired ansatz for variational quantum algorithms , 2020, 2008.01098.

[52]  Patrick J. Coles,et al.  Noise-induced barren plateaus in variational quantum algorithms , 2020, Nature Communications.

[53]  Yuya O. Nakagawa,et al.  Deep Variational Quantum Eigensolver: a divide-and-conquer method for solving a larger problem with smaller size quantum computers , 2020, 2007.10917.

[54]  Pedro C. S. Costa,et al.  Compilation of Fault-Tolerant Quantum Heuristics for Combinatorial Optimization , 2020, 2007.07391.

[55]  Patrick J. Coles,et al.  Reformulation of the No-Free-Lunch Theorem for Entangled Data Sets , 2020, Physical review letters.

[56]  V. Ulyantsev,et al.  MoG-VQE: Multiobjective genetic variational quantum eigensolver , 2020, 2007.04424.

[57]  E. Kashefi,et al.  The Born supremacy: quantum advantage and training of an Ising Born machine , 2020, npj Quantum Information.

[58]  Qi Zhao,et al.  Quantum Simulation with Hybrid Tensor Networks. , 2020, Physical review letters.

[59]  Zhenyu Cai,et al.  Multi-exponential error extrapolation and combining error mitigation techniques for NISQ applications , 2020, npj Quantum Information.

[60]  Patrick J. Coles,et al.  Machine Learning of Noise-Resilient Quantum Circuits , 2020, PRX Quantum.

[61]  Rudy Raymond,et al.  Measurements of Quantum Hamiltonians with Locally-Biased Classical Shadows , 2020, Communications in Mathematical Physics.

[62]  Jay M. Gambetta,et al.  Mitigating measurement errors in multiqubit experiments , 2020, 2006.14044.

[63]  Peter D. Johnson,et al.  Foundations for Bayesian inference with engineered likelihood functions for robust amplitude estimation , 2020, Journal of Mathematical Physics.

[64]  Patrick J. Coles,et al.  Trainability of Dissipative Perceptron-Based Quantum Neural Networks , 2020, Physical review letters.

[65]  N. Yamamoto,et al.  Expressibility of the alternating layered ansatz for quantum computation , 2020, Quantum.

[66]  Patrick J. Coles,et al.  Large gradients via correlation in random parameterized quantum circuits , 2020, Quantum Science and Technology.

[67]  Charlotte M. Deane,et al.  The prospects of quantum computing in computational molecular biology , 2020, WIREs Computational Molecular Science.

[68]  Patrick J. Coles,et al.  Error mitigation with Clifford quantum-circuit data , 2020, Quantum.

[69]  Nicholas J. Mayhall,et al.  An adaptive quantum approximate optimization algorithm for solving combinatorial problems on a quantum computer , 2020, 2005.10258.

[70]  S. Benjamin,et al.  Learning-Based Quantum Error Mitigation , 2020, PRX Quantum.

[71]  Barnaby van Straaten,et al.  Measurement Cost of Metric-Aware Variational Quantum Algorithms , 2020, PRX Quantum.

[72]  J. Biamonte,et al.  Variational Quantum Eigensolver for Frustrated Quantum Systems , 2020, ArXiv.

[73]  George Siopsis,et al.  Quantum computation of an interacting fermionic model , 2020, Quantum Science and Technology.

[74]  Earl T. Campbell,et al.  Efficient quantum measurement of Pauli operators in the presence of finite sampling error , 2020, Quantum.

[75]  Patrick J. Coles,et al.  Operator Sampling for Shot-frugal Optimization in Variational Algorithms , 2020, 2004.06252.

[76]  D. Bacon,et al.  Quantum approximate optimization of non-planar graph problems on a planar superconducting processor , 2020, Nature Physics.

[77]  Tyler Y Takeshita,et al.  Hartree-Fock on a superconducting qubit quantum computer , 2020, Science.

[78]  Patrick J. Coles,et al.  Variational quantum state eigensolver , 2020, npj Quantum Information.

[79]  A. Green,et al.  Parallel quantum simulation of large systems on small NISQ computers , 2020, npj Quantum Information.

[80]  David Von Dollen,et al.  TensorFlow Quantum: A Software Framework for Quantum Machine Learning , 2020, ArXiv.

[81]  Masoud Mohseni,et al.  Layerwise learning for quantum neural networks , 2020, Quantum Machine Intelligence.

[82]  Stuart Hadfield,et al.  Characterizing local noise in QAOA circuits , 2020, IOP SciNotes.

[83]  R. Kueng,et al.  Predicting many properties of a quantum system from very few measurements , 2020, Nature Physics.

[84]  J. Latorre,et al.  Scaling of variational quantum circuit depth for condensed matter systems , 2020, Quantum.

[85]  E. Rieffel,et al.  XY mixers: Analytical and numerical results for the quantum alternating operator ansatz , 2020 .

[86]  Xiao Yuan,et al.  Mitigating Realistic Noise in Practical Noisy Intermediate-Scale Quantum Devices , 2020, Physical Review Applied.

[87]  S. Lloyd,et al.  Quantum embeddings for machine learning , 2020, 2001.03622.

[88]  Akira Sone,et al.  Cost-Function-Dependent Barren Plateaus in Shallow Quantum Neural Networks , 2020, ArXiv.

[89]  Lei Wang,et al.  Solving quantum statistical mechanics with variational autoregressive networks and quantum circuits , 2019, Mach. Learn. Sci. Technol..

[90]  Jin-Guo Liu,et al.  Yao.jl: Extensible, Efficient Framework for Quantum Algorithm Design , 2019, Quantum.

[91]  S. Benjamin,et al.  Quantum natural gradient generalised to non-unitary circuits , 2019 .

[92]  L. Banchi,et al.  Noise-Assisted Variational Hybrid Quantum-Classical Optimization , 2019, 1912.06744.

[93]  Chris Cade,et al.  Strategies for solving the Fermi-Hubbard model on near-term quantum computers , 2019, 1912.06007.

[94]  Keisuke Fujii,et al.  Experimental quantum kernel trick with nuclear spins in a solid , 2019, npj Quantum Information.

[95]  P. Barkoutsos,et al.  Quantum orbital-optimized unitary coupled cluster methods in the strongly correlated regime: Can quantum algorithms outperform their classical equivalents? , 2019, The Journal of chemical physics.

[96]  Prasanna Balaprakash,et al.  Learning to Optimize Variational Quantum Circuits to Solve Combinatorial Problems , 2019, AAAI.

[97]  Harper R. Grimsley,et al.  qubit-ADAPT-VQE: An adaptive algorithm for constructing hardware-efficient ansatze on a quantum processor , 2019, 1911.10205.

[98]  Gabriel N. Perdue,et al.  Quantum computing for neutrino-nucleus scattering , 2019, Physical Review D.

[99]  Simon C. Benjamin,et al.  Variational Circuit Compiler for Quantum Error Correction , 2019, Physical Review Applied.

[100]  Francesco A. Evangelista,et al.  A Multireference Quantum Krylov Algorithm for Strongly Correlated Electrons. , 2019, Journal of chemical theory and computation.

[101]  F. Verstraete,et al.  Simulating lattice gauge theories within quantum technologies , 2019, The European Physical Journal D.

[102]  Yuya O. Nakagawa,et al.  Orbital optimized unitary coupled cluster theory for quantum computer , 2019, 1910.11526.

[103]  John C. Platt,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[104]  M. Plank Asymptotic expansion approximation for spatial structure arising from directionally biased movement , 2019, Physica A: Statistical Mechanics and its Applications.

[105]  Arthur G. Rattew,et al.  A Domain-agnostic, Noise-resistant, Hardware-efficient Evolutionary Variational Quantum Eigensolver , 2019, 1910.09694.

[106]  Robert Koenig,et al.  Obstacles to State Preparation and Variational Optimization from Symmetry Protection. , 2019, 1910.08980.

[107]  G. Carleo,et al.  Precise measurement of quantum observables with neural-network estimators , 2019, Physical Review Research.

[108]  Stephen K. Gray,et al.  Noise-Resilient Quantum Dynamics Using Symmetry-Preserving Ansatzes , 2019, 1910.06284.

[109]  Patrick J. Coles,et al.  Variational fast forwarding for quantum simulation beyond the coherence time , 2019, 1910.04292.

[110]  Zhenyu Cai,et al.  Resource Estimation for Quantum Variational Simulations of the Hubbard Model , 2019, 1910.02719.

[111]  Jack Hidary,et al.  Quantum Hamiltonian-Based Models and the Variational Quantum Thermalizer Algorithm , 2019, ArXiv.

[112]  Maria Schuld,et al.  Stochastic gradient descent for hybrid quantum-classical optimization , 2019, Quantum.

[113]  Ivano Tavernelli,et al.  Nonunitary Operations for Ground-State Calculations in Near-Term Quantum Computers. , 2019, Physical review letters.

[114]  Yuya O. Nakagawa,et al.  Calculation of the Green's function on near-term quantum computers , 2019, 1909.12250.

[115]  Yuki Kurashige,et al.  A Jastrow-type decomposition in quantum chemistry for low-depth quantum circuits , 2019, 1909.12410.

[116]  Patrick J. Coles,et al.  An Adaptive Optimizer for Measurement-Frugal Variational Algorithms , 2019, Quantum.

[117]  K. B. Whaley,et al.  A non-orthogonal variational quantum eigensolver , 2019, New Journal of Physics.

[118]  Peter L. McMahon,et al.  Quantum Filter Diagonalization: Quantum Eigendecomposition without Full Quantum Phase Estimation , 2019, 1909.08925.

[119]  P. Rebentrost,et al.  Near-term quantum algorithms for linear systems of equations with regression loss functions , 2019, New Journal of Physics.

[120]  Patrick J. Coles,et al.  Variational Quantum Linear Solver , 2019, Quantum.

[121]  Ying Li,et al.  Variational algorithms for linear algebra. , 2019, Science bulletin.

[122]  Jacob Biamonte,et al.  On the universality of the quantum approximate optimization algorithm , 2019, Quantum Information Processing.

[123]  Yuchun Wu,et al.  Effects of Quantum Noise on Quantum Approximate Optimization Algorithm , 2019, Chinese Physics Letters.

[124]  J. Stokes,et al.  Quantum Natural Gradient , 2019, Quantum.

[125]  Margaret Martonosi,et al.  $O(N^3)$ Measurement Cost for Variational Quantum Eigensolver on Molecular Hamiltonians , 2019, IEEE Transactions on Quantum Engineering.

[126]  Yuya O. Nakagawa,et al.  Variational quantum algorithm for nonequilibrium steady states , 2019, 1908.09836.

[127]  B'alint Koczor,et al.  Variational-state quantum metrology , 2019, New Journal of Physics.

[128]  P. Zoller,et al.  Variational Spin-Squeezing Algorithms on Programmable Quantum Sensors. , 2019, Physical review letters.

[129]  William M. Kirby,et al.  Measurement reduction in variational quantum algorithms , 2019, Physical Review A.

[130]  Barnaby van Straaten,et al.  Efficient quantum measurement of Pauli operators , 2019, 1908.06942.

[131]  Kunal Sharma,et al.  Noise resilience of variational quantum compiling , 2019, New Journal of Physics.

[132]  R. Young,et al.  Accelerating Lattice Quantum Field Theory Calculations via Interpolator Optimization Using Noisy Intermediate-Scale Quantum Computing. , 2019, Physical review letters.

[133]  Stuart Hadfield,et al.  Optimizing quantum heuristics with meta-learning , 2019, Quantum Machine Intelligence.

[134]  Nathan Wiebe,et al.  Efficient and noise resilient measurements for quantum chemistry on near-term quantum computers , 2019, npj Quantum Information.

[135]  Tzu-Ching Yen,et al.  Measuring all compatible operators in one series of single-qubit measurements using unitary transformations. , 2019, Journal of chemical theory and computation.

[136]  J. Joo,et al.  Variational quantum algorithms for nonlinear problems , 2019, Physical Review A.

[137]  Tzu-Ching Yen,et al.  Unitary partitioning approach to the measurement problem in the Variational Quantum Eigensolver method. , 2019, Journal of chemical theory and computation.

[138]  Michele Mosca,et al.  Pauli Partitioning with Respect to Gate Sets. , 2019, 1907.07859.

[139]  Masoud Mohseni,et al.  Learning to learn with quantum neural networks via classical neural networks , 2019, ArXiv.

[140]  Vladyslav Verteletskyi,et al.  Measurement optimization in the variational quantum eigensolver using a minimum clique cover. , 2019, The Journal of chemical physics.

[141]  Jos'e I. Latorre,et al.  Data re-uploading for a universal quantum classifier , 2019, Quantum.

[142]  Chao-Han Huck Yang,et al.  Variational Quantum Circuits for Deep Reinforcement Learning , 2019, IEEE Access.

[143]  Patrick J. Coles,et al.  Variational Quantum Fidelity Estimation , 2019, Quantum.

[144]  Peter D. Johnson,et al.  Expressibility and Entangling Capability of Parameterized Quantum Circuits for Hybrid Quantum‐Classical Algorithms , 2019, Advanced Quantum Technologies.

[145]  Ilya Safro,et al.  Multistart Methods for Quantum Approximate optimization , 2019, 2019 IEEE High Performance Extreme Computing Conference (HPEC).

[146]  M. B. Hastings,et al.  Classical and quantum bounded depth approximation algorithms , 2019, Quantum Inf. Comput..

[147]  L. DiCarlo,et al.  Calculating energy derivatives for quantum chemistry on a quantum computer , 2019, npj Quantum Information.

[148]  Diego Garc'ia-Mart'in,et al.  Quantum singular value decomposer , 2019, 1905.01353.

[149]  Nicholas J. Mayhall,et al.  Efficient symmetry-preserving state preparation circuits for the variational quantum eigensolver algorithm , 2019, npj Quantum Information.

[150]  S. Lloyd,et al.  Variational quantum unsampling on a quantum photonic processor , 2019, Nature Physics.

[151]  Ken M. Nakanishi,et al.  Subspace variational quantum simulator , 2019, Physical Review Research.

[152]  Peter L. McMahon,et al.  A Jacobi Diagonalization and Anderson Acceleration Algorithm For Variational Quantum Algorithm Parameter Optimization. , 2019, 1904.03206.

[153]  Elham Kashefi,et al.  The Born supremacy: quantum advantage and training of an Ising Born machine , 2019, npj Quantum Information.

[154]  Keisuke Fujii,et al.  Sequential minimal optimization for quantum-classical hybrid algorithms , 2019, Physical Review Research.

[155]  Ryan Babbush,et al.  Decoding quantum errors with subspace expansions , 2019, Nature Communications.

[156]  Edward Grant,et al.  An initialization strategy for addressing barren plateaus in parametrized quantum circuits , 2019, Quantum.

[157]  J. Biamonte Universal variational quantum computation , 2019, Physical Review A.

[158]  Terry Farrelly,et al.  Training deep quantum neural networks , 2019, Nature Communications.

[159]  Ryan Babbush,et al.  Increasing the Representation Accuracy of Quantum Simulations of Chemistry without Extra Quantum Resources , 2019, Physical Review X.

[160]  Lei Wang,et al.  Variational quantum eigensolver with fewer qubits , 2019, Physical Review Research.

[161]  John Napp,et al.  Low-Depth Gradient Measurements Can Improve Convergence in Variational Hybrid Quantum-Classical Algorithms. , 2019, Physical review letters.

[162]  T. Martínez,et al.  Quantum Computation of Electronic Transitions Using a Variational Quantum Eigensolver. , 2019, Physical review letters.

[163]  Alan Aspuru-Guzik,et al.  Variational Quantum Generators: Generative Adversarial Quantum Machine Learning for Continuous Distributions , 2019, Advanced Quantum Technologies.

[164]  Keisuke Fujii,et al.  Methodology for replacing indirect measurements with direct measurements , 2018, Physical Review Research.

[165]  Harper R. Grimsley,et al.  An adaptive variational algorithm for exact molecular simulations on a quantum computer , 2018, Nature Communications.

[166]  S. Lloyd Quantum approximate optimization is computationally universal , 2018, 1812.11075.

[167]  Patrick J. Coles,et al.  Variational consistent histories as a hybrid algorithm for quantum foundations , 2018, Nature Communications.

[168]  Nicolas P. D. Sawaya,et al.  Quantum Chemistry in the Age of Quantum Computing. , 2018, Chemical reviews.

[169]  Y. Li,et al.  Variational Quantum Simulation of General Processes. , 2018, Physical review letters.

[170]  Ying Li,et al.  Theory of variational quantum simulation , 2018, Quantum.

[171]  Brian Swingle,et al.  Product spectrum ansatz and the simplicity of thermal states , 2018, Physical Review A.

[172]  Leo Zhou,et al.  Quantum Approximate Optimization Algorithm: Performance, Mechanism, and Implementation on Near-Term Devices , 2018, Physical Review X.

[173]  C. Gogolin,et al.  Evaluating analytic gradients on quantum hardware , 2018, Physical Review A.

[174]  John Preskill,et al.  Simulating quantum field theory with a quantum computer , 2018, Proceedings of The 36th Annual International Symposium on Lattice Field Theory — PoS(LATTICE2018).

[175]  Gavin E. Crooks,et al.  Performance of the Quantum Approximate Optimization Algorithm on the Maximum Cut Problem , 2018, 1811.08419.

[176]  Nathan Killoran,et al.  PennyLane: Automatic differentiation of hybrid quantum-classical computations , 2018, ArXiv.

[177]  Tyson Jones,et al.  Quantum compilation and circuit optimisation via energy dissipation , 2018 .

[178]  Alán Aspuru-Guzik,et al.  Potential of quantum computing for drug discovery , 2018, IBM J. Res. Dev..

[179]  K. Fujii,et al.  Variational Quantum Gate Optimization. , 2018, 1810.12745.

[180]  Dacheng Tao,et al.  The Expressive Power of Parameterized Quantum Circuits , 2018, ArXiv.

[181]  Patrick J. Coles,et al.  Variational quantum state diagonalization , 2018, npj Quantum Information.

[182]  Ken M. Nakanishi,et al.  Subspace-search variational quantum eigensolver for excited states , 2018, Physical Review Research.

[183]  James D. Whitfield,et al.  Superfast encodings for fermionic quantum simulation , 2018, Physical Review Research.

[184]  Soonwon Choi,et al.  Quantum convolutional neural networks , 2018, Nature Physics.

[185]  Andrew M. Weiner,et al.  Simulations of subatomic many-body physics on a quantum frequency processor , 2018, Physical Review A.

[186]  P. Zoller,et al.  Self-verifying variational quantum simulation of lattice models , 2018, Nature.

[187]  K. B. Whaley,et al.  Generalized Unitary Coupled Cluster Wave functions for Quantum Computation. , 2018, Journal of chemical theory and computation.

[188]  Geoff J Pryde,et al.  Experimental Realization of a Quantum Autoencoder: The Compression of Qutrits via Machine Learning. , 2018, Physical review letters.

[189]  Alán Aspuru-Guzik,et al.  Quantum computational chemistry , 2018, Reviews of Modern Physics.

[190]  Alán Aspuru-Guzik,et al.  Variational Quantum Factoring , 2018, QTOP@NetSys.

[191]  Ying Li,et al.  Mitigating algorithmic errors in a Hamiltonian simulation , 2018, Physical Review A.

[192]  Ryan Babbush,et al.  Low rank representations for quantum simulation of electronic structure , 2018, npj Quantum Information.

[193]  T. O'Brien,et al.  Low-cost error mitigation by symmetry verification , 2018, Physical Review A.

[194]  Simon Benjamin,et al.  Error-Mitigated Digital Quantum Simulation. , 2018, Physical review letters.

[195]  Ryan LaRose,et al.  Quantum-assisted quantum compiling , 2018, Quantum.

[196]  Michael Broughton,et al.  A Universal Training Algorithm for Quantum Deep Learning , 2018, 1806.09729.

[197]  S. Gray,et al.  Recovering noise-free quantum observables , 2018, Physical Review A.

[198]  Xiao Yuan,et al.  Variational quantum algorithms for discovering Hamiltonian spectra , 2018, Physical Review A.

[199]  A. Garcia-Saez,et al.  Addressing hard classical problems with Adiabatically Assisted Variational Quantum Eigensolvers , 2018, 1806.02287.

[200]  R. Somma,et al.  Quantum Algorithms for Systems of Linear Equations Inspired by Adiabatic Quantum Computing. , 2018, Physical review letters.

[201]  S. Brierley,et al.  Variational Quantum Computation of Excited States , 2018, Quantum.

[202]  J. Gambetta,et al.  Error mitigation extends the computational reach of a noisy quantum processor , 2018, Nature.

[203]  Alexandru Paler,et al.  Encoding Electronic Spectra in Quantum Circuits with Linear T Complexity , 2018, Physical Review X.

[204]  Kristan Temme,et al.  Supervised learning with quantum-enhanced feature spaces , 2018, Nature.

[205]  Lei Wang,et al.  Differentiable Learning of Quantum Circuit Born Machine , 2018, Physical Review A.

[206]  Scott Pakin,et al.  Quantum Algorithm Implementations for Beginners , 2018, ACM Transactions on Quantum Computing.

[207]  Xiao Yuan,et al.  Variational ansatz-based quantum simulation of imaginary time evolution , 2018, npj Quantum Information.

[208]  Stacey Jeffery,et al.  The power of block-encoded matrix powers: improved regression techniques via faster Hamiltonian simulation , 2018, ICALP.

[209]  J. Cirac,et al.  Digital quantum simulation of lattice gauge theories in three spatial dimensions , 2018, New Journal of Physics.

[210]  M. Schuld,et al.  Circuit-centric quantum classifiers , 2018, Physical Review A.

[211]  Ryan Babbush,et al.  Barren plateaus in quantum neural network training landscapes , 2018, Nature Communications.

[212]  Maria Schuld,et al.  Quantum Machine Learning in Feature Hilbert Spaces. , 2018, Physical review letters.

[213]  Patrick J. Coles,et al.  Learning the quantum algorithm for state overlap , 2018, New Journal of Physics.

[214]  Keisuke Fujii,et al.  Quantum circuit learning , 2018, Physical Review A.

[215]  W. W. Ho,et al.  Efficient variational simulation of non-trivial quantum states , 2018, SciPost Physics.

[216]  Hartmut Neven,et al.  Classification with Quantum Neural Networks on Near Term Processors , 2018, 1802.06002.

[217]  S. Brierley,et al.  Accelerated Variational Quantum Eigensolver. , 2018, Physical review letters.

[218]  Alejandro Perdomo-Ortiz,et al.  A generative modeling approach for benchmarking and training shallow quantum circuits , 2018, npj Quantum Information.

[219]  R. Pooser,et al.  Cloud Quantum Computing of an Atomic Nucleus. , 2018, Physical review letters.

[220]  J. McClean,et al.  Application of fermionic marginal constraints to hybrid quantum algorithms , 2018, 1801.03524.

[221]  Jonathan Romero,et al.  Low-depth circuit ansatz for preparing correlated fermionic states on a quantum computer , 2018, Quantum Science and Technology.

[222]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[223]  S. Benjamin,et al.  Practical Quantum Error Mitigation for Near-Future Applications , 2017, Physical Review X.

[224]  Michael Broughton,et al.  A quantum algorithm to train neural networks using low-depth circuits , 2017, 1712.05304.

[225]  D. Berry,et al.  Improved techniques for preparing eigenstates of fermionic Hamiltonians , 2017, 1711.10460.

[226]  Isaac H. Kim,et al.  Robust entanglement renormalization on a noisy quantum computer , 2017, 1711.07500.

[227]  Alán Aspuru-Guzik,et al.  Quantum Simulation of Electronic Structure with Linear Depth and Connectivity. , 2017, Physical review letters.

[228]  Peter D. Johnson,et al.  QVECTOR: an algorithm for device-tailored quantum error correction , 2017, 1711.02249.

[229]  Andrew W. Cross,et al.  Quantum optimization using variational algorithms on near-term quantum devices , 2017, Quantum Science and Technology.

[230]  Rupak Biswas,et al.  From the Quantum Approximate Optimization Algorithm to a Quantum Alternating Operator Ansatz , 2017, Algorithms.

[231]  Stuart Hadfield,et al.  The Quantum Approximation Optimization Algorithm for MaxCut: A Fermionic View , 2017, 1706.02998.

[232]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[233]  Isaac H. Kim Noise-resilient preparation of quantum many-body ground states , 2017, 1703.00032.

[234]  Isaac H. Kim Holographic quantum simulation , 2017, 1702.02093.

[235]  J. McClean,et al.  Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz , 2017, Quantum Science and Technology.

[236]  Mikhail Smelyanskiy,et al.  Practical optimization for hybrid quantum-classical algorithms , 2017, 1701.01450.

[237]  Jun Li,et al.  Enhancing quantum control by bootstrapping a quantum processor of 12 qubits , 2017, 1701.01198.

[238]  Alán Aspuru-Guzik,et al.  Quantum autoencoders for efficient compression of quantum data , 2016, 1612.02806.

[239]  Kristan Temme,et al.  Error Mitigation for Short-Depth Quantum Circuits. , 2016, Physical review letters.

[240]  Robert Gardner,et al.  Quantum generalisation of feedforward neural networks , 2016, npj Quantum Information.

[241]  Ying Li,et al.  Efficient Variational Quantum Simulator Incorporating Active Error Minimization , 2016, 1611.09301.

[242]  S. Lloyd,et al.  Quantum machine learning , 2016, Nature.

[243]  F. Brandão,et al.  Local Random Quantum Circuits are Approximate Polynomial-Designs , 2016, Communications in Mathematical Physics.

[244]  Jun Li,et al.  Hybrid Quantum-Classical Approach to Quantum Optimal Control. , 2016, Physical review letters.

[245]  Hartmut Neven,et al.  Optimizing Variational Quantum Algorithms using Pontryagin's Minimum Principle , 2016, ArXiv.

[246]  M. Hastings,et al.  Training A Quantum Optimizer , 2016, 1605.05370.

[247]  J. Carter,et al.  Hybrid Quantum-Classical Hierarchy for Mitigation of Decoherence and Determination of Excited States , 2016, 1603.05681.

[248]  A. Harrow,et al.  Quantum Supremacy through the Quantum Approximate Optimization Algorithm , 2016, 1602.07674.

[249]  Cedric Yen-Yu Lin,et al.  Performance of QAOA on Typical Instances of Constraint Satisfaction Problems with Bounded Degree , 2016, ArXiv.

[250]  P. Coveney,et al.  Scalable Quantum Simulation of Molecular Energies , 2015, 1512.06860.

[251]  Andrew M. Childs,et al.  Quantum Algorithm for Systems of Linear Equations with Exponentially Improved Dependence on Precision , 2015, SIAM J. Comput..

[252]  Matthew B. Hastings,et al.  Hybrid quantum-classical approach to correlated materials , 2015, 1510.03859.

[253]  Alán Aspuru-Guzik,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[254]  M. Hastings,et al.  Progress towards practical quantum variational algorithms , 2015, 1507.08969.

[255]  Benoît Valiron,et al.  Concrete resource analysis of the quantum linear-system algorithm used to compute the electromagnetic scattering cross section of a 2D target , 2015, Quantum Inf. Process..

[256]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[257]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm Applied to a Bounded Occurrence Constraint Problem , 2014, 1412.6062.

[258]  Ashish Kapoor,et al.  Quantum deep learning , 2014, Quantum Inf. Comput..

[259]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[260]  F. Petruccione,et al.  An introduction to quantum machine learning , 2014, Contemporary Physics.

[261]  F. Nori,et al.  Quantum Simulation , 2013, Quantum Atom Optics.

[262]  S. Lloyd,et al.  Quantum principal component analysis , 2013, Nature Physics.

[263]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[264]  Iain McCulloch,et al.  Charge-Transfer State Dynamics Following Hole and Electron Transfer in Organic Photovoltaic Devices. , 2013, The journal of physical chemistry letters.

[265]  F. Brandão,et al.  Local random quantum circuits are approximate polynomial-designs: numerical results , 2012, 1208.0692.

[266]  Sandeep Sharma,et al.  The density matrix renormalization group in quantum chemistry. , 2011, Annual review of physical chemistry.

[267]  Andris Ambainis,et al.  Variable time amplitude amplification and a faster quantum algorithm for solving systems of linear equations , 2010, ArXiv.

[268]  W. Zurek Quantum Darwinism , 2009, 0903.5082.

[269]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[270]  J. Tully,et al.  Mixed quantum-classical equilibrium: Surface hopping. , 2008, The Journal of chemical physics.

[271]  R. Jozsa,et al.  Matchgates and classical simulation of quantum circuits , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[272]  A. Harrow,et al.  Random Quantum Circuits are Approximate 2-designs , 2008, 0802.1919.

[273]  T. Meyer,et al.  Proton-coupled electron transfer. , 2007, Chemical reviews.

[274]  P. Hayden,et al.  Black holes as mirrors: Quantum information in random subsystems , 2007, 0708.4025.

[275]  Yaoyun Shi,et al.  Simulating Quantum Computation by Contracting Tensor Networks , 2005, SIAM J. Comput..

[276]  M. Head‐Gordon,et al.  Simulated Quantum Computation of Molecular Energies , 2005, Science.

[277]  Bill Rosgen,et al.  On the hardness of distinguishing mixed-state quantum computations , 2004, 20th Annual IEEE Conference on Computational Complexity (CCC'05).

[278]  Leslie G. Valiant,et al.  Quantum Circuits That Can Be Simulated Classically in Polynomial Time , 2002, SIAM J. Comput..

[279]  R. Griffiths Consistent Quantum Theory , 2001 .

[280]  David P. DiVincenzo,et al.  Classical simulation of noninteracting-fermion quantum circuits , 2001, ArXiv.

[281]  M. Altaisky Quantum neural network , 2001 .

[282]  T. Paul,et al.  Quantum computation and quantum information , 2001, SOEN.

[283]  R. Cleve,et al.  Quantum fingerprinting. , 2001, Physical review letters.

[284]  Heinz-Georg Nothofer,et al.  Improving the performance of doped π-conjugated polymers for use in organic light-emitting diodes , 2000, Nature.

[285]  A. Kitaev,et al.  Fermionic Quantum Computation , 2000, quant-ph/0003137.

[286]  Wolfgang Küchlin,et al.  Proving Consistency Assertions for Automotive Product Data Management , 2000, Journal of Automated Reasoning.

[287]  R. Feynman Simulating physics with computers , 1999 .

[288]  S. Lloyd,et al.  Quantum Algorithm Providing Exponential Speed Increase for Finding Eigenvalues and Eigenvectors , 1998, quant-ph/9807070.

[289]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[290]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[291]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[292]  J. Spall Multivariate stochastic approximation using a simultaneous perturbation gradient approximation , 1992 .

[293]  ReineltGerhard,et al.  An Application of Combinatorial Optimization to Statistical Physics and Circuit Layout Design , 1988 .

[294]  Martin Grötschel,et al.  An Application of Combinatorial Optimization to Statistical Physics and Circuit Layout Design , 1988, Oper. Res..

[295]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[296]  L. Franken,et al.  Explorations in Quantum Neural Networks with Intermediate Measurements , 2020, ESANN.

[297]  David J. Schwab,et al.  Supervised Learning with Tensor Networks , 2016, NIPS.

[298]  Masahito Hayashi Quantum information theory , 2007, Physics Subject Headings (PhySH).

[299]  Andrew G. Taube,et al.  New perspectives on unitary coupled‐cluster theory , 2006 .

[300]  H. Buhrman,et al.  Quantum Ngerprinting , 2001 .

[301]  E. Bach Discrete Logarithms and Factoring , 1984 .

[302]  J. Tully,et al.  Trajectory Surface Hopping Approach to Nonadiabatic Molecular Collisions: The Reaction of H+ with D2 , 1971 .

[303]  A. D. McLachlan,et al.  A variational solution of the time-dependent Schrodinger equation , 1964 .

[304]  Andrew B. Lawson Computation , 2022, Using R for Bayesian Spatial and Spatio-Temporal Health Modeling.