Recombination pathways in polymer:fullerene photovoltaics observed through spin polarization measurements

We report magnetoconductance measurements on polymer:fullerene photovoltaic devices in the regime of high fields and low temperatures, where spin polarization of injected carriers plays an important role. The current either decreases or increases with magnetic field, depending on whether the interfacial charge-transfer state lies above or below the intramolecular triplet state in energy. Rapid transitions from triplet charge-transfer states to lower-lying triplet excitons constitute an important loss mechanism that is responsible for the negative magnetoconductance observed.

[1]  R. Friend,et al.  The role of spin in the kinetic control of recombination in organic photovoltaics , 2013, Nature.

[2]  B. Koopmans,et al.  Tuning organic magnetoresistance in polymer-fullerene blends by controlling spin reaction pathways , 2013, Nature Communications.

[3]  A. Heeger,et al.  High‐Efficiency Polymer Solar Cells Enhanced by Solvent Treatment , 2013, Advanced materials.

[4]  N. Greenham,et al.  Control of exciton spin statistics through spin polarization in organic optoelectronic devices , 2012, Nature Communications.

[5]  Miao Xu,et al.  Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure , 2012, Nature Photonics.

[6]  B. Koopmans,et al.  Spin-spin interactions in organic magnetoresistance probed by angle-dependent measurements. , 2011, Physical review letters.

[7]  M. Wienk,et al.  Diketopyrrolopyrrole-based acceptor polymers for photovoltaic application. , 2011, Physical chemistry chemical physics : PCCP.

[8]  Eric Vauthey,et al.  Exciton formation, relaxation, and decay in PCDTBT. , 2010, Journal of the American Chemical Society.

[9]  Stefan C J Meskers,et al.  Improved Film Morphology Reduces Charge Carrier Recombination into the Triplet Excited State in a Small Bandgap Polymer‐Fullerene Photovoltaic Cell , 2010, Advanced materials.

[10]  Gang Li,et al.  For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4% , 2010, Advanced materials.

[11]  A. Epstein,et al.  Magnetoresistance for organic semiconductors: Small molecule, oligomer, conjugated polymer, and non-conjugated polymer , 2010 .

[12]  Olle Inganäs,et al.  On the origin of the open-circuit voltage of polymer-fullerene solar cells. , 2009, Nature materials.

[13]  Raj René Janssen,et al.  The Energy of Charge‐Transfer States in Electron Donor–Acceptor Blends: Insight into the Energy Losses in Organic Solar Cells , 2009 .

[14]  M. Shao,et al.  Magnetic‐Field Effects in Organic Semiconducting Materials and Devices , 2009 .

[15]  H. Bässler,et al.  Magnetic field effects in pi-conjugated polymer-fullerene blends: evidence for multiple components. , 2008, Physical review letters.

[16]  Charlotte K. Williams,et al.  Charge recombination in organic photovoltaic devices with high open-circuit voltages. , 2008, Journal of the American Chemical Society.

[17]  Donal D. C. Bradley,et al.  Bimolecular recombination losses in polythiophene: Fullerene solar cells , 2008 .

[18]  D. M. Lincoln,et al.  Inversion of magnetoresistance in organic semiconductors. , 2008, Physical review letters.

[19]  B. Koopmans,et al.  A two-site bipolaron model for organic magnetoresistance , 2008 .

[20]  W. Gillin,et al.  Magnetoresistance in organic light-emitting diode structures under illumination , 2007 .

[21]  R. Friend,et al.  Influence of Nanoscale Phase Separation on the Charge Generation Dynamics and Photovoltaic Performance of Conjugated Polymer Blends: Balancing Charge Generation and Separation , 2007 .

[22]  B. Koopmans,et al.  Bipolaron mechanism for organic magnetoresistance. , 2007, Physical review letters.

[23]  I. Alexandrou,et al.  Optical properties of conjugated poly(3-hexylthiophene)/[6,6]-phenylC61-butyric acid methyl ester composites , 2007 .

[24]  Olle Inganäs,et al.  Geminate charge recombination in alternating polyfluorene copolymer/fullerene blends. , 2007, Journal of the American Chemical Society.

[25]  Daniel Moses,et al.  Photoconductivity of a Low‐Bandgap Conjugated Polymer , 2007 .

[26]  S. Meskers,et al.  Triplet formation from the charge-separated state in blends of MDMO-PPV with cyano-containing acceptor polymers , 2006 .

[27]  D. M. Lincoln,et al.  Anomalous room temperature magnetoresistance in organic semiconductors , 2006 .

[28]  S. Meskers,et al.  Exciplex dynamics in a blend of π-conjugated polymers with electron donating and accepting properties : MDMO-PPV and PCNEPV , 2005 .

[29]  N. S. Sariciftci,et al.  Bimolecular recombination coefficient as a sensitive testing parameter for low-mobility solar-cell materials. , 2005, Physical review letters.

[30]  V. Mihailetchi,et al.  Photocurrent generation in polymer-fullerene bulk heterojunctions. , 2004, Physical review letters.

[31]  David Beljonne,et al.  The Singlet–Triplet Exchange Energy in Conjugated Polymers , 2004 .

[32]  R. Janssen,et al.  Charge recombination in a poly(para-phenylene vinylene)-fullerene derivative composite film studied by transient, nonresonant, hole-burning spectroscopy , 2003 .

[33]  W. Ruppel,et al.  Two‐Carrier Space‐Charge‐Limited Current in a Trap‐Free Insulator , 1959 .