Review of peridynamic modelling of material failure and damage due to impact

Abstract Failure and damage of natural and man-made materials as a result of impact loading needs to be understood as it is a phenomena that occurs in many fields of science and engineering. Impact mechanics is typically modelled using a wide range of numerical approaches, such as rigid body dynamics and wave propagation. However, many of these methods are limited to capturing the impact of bodies but not the fracture mechanics, especially at weak spot regions like material interfaces, cracks, or voids. Imperfections decrease the strength of materials due to the presence of stress concentration regions leading to failure occurring at the lower stress levels. Therefore, due to the limitations in the classical theories, alternative methods need to be considered. Peridynamics, a non-local theory, is a reformulation of the classical continuum mechanics that uses integrals instead of spatial derivatives, which makes it a competent tool to study and predict impact-based fracture because of its ability to model discontinuities in different materials and predict the extent of damage. This review article provides an overview of different applications of peridynamics in modelling impact damage due to collision, and offers a brief summary of the peridynamic theory.

[1]  Erkan Oterkus,et al.  Peridynamic modeling of composite laminates under explosive loading , 2016 .

[2]  Serge Prudhomme,et al.  A force-based coupling scheme for peridynamics and classical elasticity , 2013 .

[3]  Erdogan Madenci,et al.  Ordinary-state based peridynamic truss element , 2015 .

[4]  David E. Stewart,et al.  Rigid-Body Dynamics with Friction and Impact , 2000, SIAM Rev..

[5]  A. Cemal Eringen,et al.  Stress concentration at the tip of crack , 1974 .

[6]  Philippe H. Geubelle,et al.  Non-ordinary state-based peridynamic analysis of stationary crack problems , 2014 .

[7]  Debasish Roy,et al.  Peridynamics damage model through phase field theory , 2017, Peridynamic Modeling, Numerical Techniques, and Applications.

[8]  S. Hodges,et al.  Whiplash: a review of a commonly misunderstood injury. , 2001, The American journal of medicine.

[9]  Hailong Chen,et al.  Bond-associated deformation gradients for peridynamic correspondence model , 2018, Mechanics Research Communications.

[10]  Nicolas Sau,et al.  Peridynamic modeling of concrete structures , 2007 .

[11]  Timon Rabczuk,et al.  Dual-horizon peridynamics: A stable solution to varying horizons , 2017, 1703.05910.

[12]  R. Lehoucq,et al.  Peridynamics for multiscale materials modeling , 2008 .

[13]  Wei Chen,et al.  Peridynamics‐Based Fracture Animation for Elastoplastic Solids , 2018, Comput. Graph. Forum.

[14]  Dahsin Liu,et al.  Simulating Wave Propagation in SHPB with Peridynamics , 2014 .

[15]  Qihu Qian,et al.  Numerical simulation of crack curving and branching in brittle materials under dynamic loads using the extended non-ordinary state-based peridynamics , 2016 .

[16]  Philippe H. Geubelle,et al.  Handbook of Peridynamic Modeling , 2017 .

[17]  Raouf A. Ibrahim,et al.  Recent advances in vibro-impact dynamics and collision of ocean vessels , 2014 .

[18]  S. Silling,et al.  Modeling shockwaves and impact phenomena with Eulerian peridynamics , 2017 .

[19]  I. Guven,et al.  An experimental and peridynamic study of the erosion of optical glass targets due to sand and sphere microparticles , 2019, Wear.

[20]  M. Richter,et al.  Whiplash-type neck distortion in restrained car drivers: frequency, causes and long-term results , 2000, European Spine Journal.

[21]  Memis Acar,et al.  Car seat design to improve rear-impact protection , 2011 .

[22]  S. S. Narayanan Modelling the performance of industrial ball mills using single particle breakage data , 1987 .

[23]  A. Cemal Eringen,et al.  Linear theory of nonlocal elasticity and dispersion of plane waves , 1972 .

[24]  Selda Oterkus,et al.  Ordinary state-based peridynamics for thermoviscoelastic deformation , 2017 .

[25]  Surendra P. Shah,et al.  Mixed‐Mode Fracture of Concrete Subjected to Impact Loading , 1990 .

[26]  I. Guven,et al.  Implementation of a Neo-Hookean Material Model in State-Based Peridynamics to Represent Nylon Bead Behavior during High-Speed Impact , 2020 .

[27]  S. Winkler,et al.  Wave and Fracture Phenomena in Impacted Ceramics , 1989 .

[28]  Jidong Zhao,et al.  Modeling continuous grain crushing in granular media: A hybrid peridynamics and physics engine approach , 2019, Computer Methods in Applied Mechanics and Engineering.

[29]  Olaf Weckner,et al.  The effect of long-range forces on the dynamics of a bar , 2005 .

[30]  Bo Ren,et al.  A 3D discontinuous Galerkin finite element method with the bond-based peridynamics model for dynamic brittle failure analysis , 2017 .

[31]  T. L. Warren,et al.  A non-ordinary state-based peridynamic method to model solid material deformation and fracture , 2009 .

[32]  Xiaoliang Deng,et al.  Numerical investigation of impact breakage mechanisms of two spherical particles , 2020 .

[33]  Tei-Chen Chen,et al.  Studies of crack growth and propagation of single-crystal nickel by molecular dynamics , 2015 .

[34]  Jifeng Xu,et al.  Peridynamic Analysis of Impact Damage in Composite Laminates , 2008 .

[35]  Mirco Zaccariotto,et al.  Crack propagation with adaptive grid refinement in 2D peridynamics , 2014, International Journal of Fracture.

[36]  Richard A. Regueiro,et al.  Peridynamics simulations of geomaterial fragmentation by impulse loads , 2015 .

[37]  S. Silling,et al.  Viscoplasticity using peridynamics , 2010 .

[38]  Sebastian Heimbs,et al.  High-Velocity Impact Behaviour of Prestressed Composite Plates under Bird Strike Loading , 2012 .

[39]  Mirco Zaccariotto,et al.  Coupling of FEM meshes with Peridynamic grids , 2018 .

[40]  Youn Doh Ha,et al.  CONCURRENT COUPLING OF BOND-BASED PERIDYNAMICS AND THE NAVIER EQUATION OF CLASSICAL ELASTICITY BY BLENDING , 2015 .

[41]  Pizhong Qiao,et al.  An improved peridynamic approach for quasi-static elastic deformation and brittle fracture analysis , 2015 .

[42]  Geoffrey Ingram Taylor,et al.  The use of flat-ended projectiles for determining dynamic yield stress I. Theoretical considerations , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[43]  Guolai Yang,et al.  The application of peridynamics in predicting beam vibration and impact damage , 2015 .

[44]  W. Goldsmith,et al.  Impact: the theory and physical behaviour of colliding solids. , 1960 .

[45]  Rajiv K. Kalia,et al.  ATOMISTIC ASPECTS OF CRACK PROPAGATION IN BRITTLE MATERIALS: Multimillion Atom Molecular Dynamics Simulations , 2002 .

[46]  Patrick Diehl,et al.  Simulation of Wave Propagation and Impact Damage in Brittle Materials Using Peridynamics , 2015 .

[47]  Dennj De Meo,et al.  Modelling of stress-corrosion cracking by using peridynamics , 2016 .

[48]  Jifeng Xu,et al.  Peridynamic analysis of damage and failure in composites. , 2006 .

[49]  Uday K. Vaidya,et al.  Impact Response of Laminated and Sandwich Composites , 2011 .

[50]  Youn Doh Ha,et al.  ADAPTIVE REFINEMENT AND MULTISCALEMODELING IN 2D PERIDYNAMICS , 2011 .

[51]  Richard B. Lehoucq,et al.  Peridynamics as an Upscaling of Molecular Dynamics , 2009, Multiscale Model. Simul..

[52]  Validation of a model for impact breakage incorporating particle size effect , 2007 .

[53]  Jifeng Xu,et al.  Hail Impact Characteristics of a Hybrid Material by Advanced Analysis Techniques and Testing , 2011 .

[54]  F. Bobaru,et al.  Supershear damage propagation and sub-Rayleigh crack growth from edge-on impact: A peridynamic analysis , 2018 .

[55]  Stewart Andrew Silling,et al.  Peridynamic Modeling of Impact Damage , 2004 .

[56]  Steven J. Plimpton,et al.  Implementing peridynamics within a molecular dynamics code , 2007, Comput. Phys. Commun..

[57]  David John Littlewood,et al.  Simulation of Dynamic Fracture Using Peridynamics, Finite Element Modeling, and Contact , 2010 .

[58]  Mario Di Paola,et al.  The mechanically-based approach to 3D non-local linear elasticity theory: Long-range central interactions , 2010 .

[59]  S. Kazemi Plastic deformation due to high-velocity impact using ordinary state-based peridynamic theory , 2020 .

[60]  Thomas Ertl,et al.  Extraction of Fragments and Waves After Impact Damage in Particle-Based Simulations , 2017 .

[61]  Yongkang Zhang,et al.  Numerical and experimental investigation on hail impact on composite panels , 2017 .

[62]  Shengming Zhang,et al.  On Impact Mechanics in Ship Collisions , 1998 .

[63]  B. M. Butcher,et al.  Strain‐Rate Effects in Metals , 1966 .

[64]  Erkan Oterkus,et al.  A non-ordinary state-based peridynamics formulation for thermoplastic fracture , 2016 .

[65]  Y. M. Haddad,et al.  Elastic Wave Propagation , 2000 .

[66]  J. F. Kalthoff Modes of dynamic shear failure in solids , 2000 .

[67]  Hui Liu,et al.  Dependency of single-particle crushing patterns on discretization using peridynamics , 2020 .

[68]  Stewart Andrew Silling,et al.  Dynamic fracture modeling with a meshfree peridynamic code , 2003 .

[69]  Hongwei Deng,et al.  Peridynamics simulation of crack propagation of ring-shaped specimen like rock under dynamic loading , 2019, International Journal of Rock Mechanics and Mining Sciences.

[70]  David John Littlewood,et al.  Variable Horizon in a Peridynamic Medium , 2015 .

[71]  Xiaoqiao He,et al.  Investigation on mode-I crack propagation in concrete using bond-based peridynamics with a new damage model , 2018, Engineering Fracture Mechanics.

[72]  Charles E. Anderson,et al.  Taylor Anvil Impact , 2005 .

[73]  Erdogan Madenci,et al.  Predicting crack propagation with peridynamics: a comparative study , 2011 .

[74]  A. Eringen,et al.  On nonlocal elasticity , 1972 .

[75]  Yunteng Wang,et al.  A 3-D conjugated bond-pair-based peridynamic formulation for initiation and propagation of cracks in brittle solids , 2017 .

[76]  Dan Huang,et al.  An ordinary state-based peridynamic modeling for dynamic fracture of laminated glass under low-velocity impact , 2020 .

[77]  M. Dumbser,et al.  An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes - I. The two-dimensional isotropic case with external source terms , 2006 .

[78]  W. Burton,et al.  On the implications for LEFM of the three-dimensional aspects in some crack/surface intersection problems , 1984 .

[79]  Timon Rabczuk,et al.  Dual‐horizon peridynamics , 2015, 1506.05146.

[80]  Timon Rabczuk,et al.  A peridynamics formulation for quasi-static fracture and contact in rock , 2017 .

[81]  S. Silling,et al.  Peridynamics via finite element analysis , 2007 .

[82]  S. Silling,et al.  Convergence, adaptive refinement, and scaling in 1D peridynamics , 2009 .

[83]  Sandia Report,et al.  A Nonlocal, Ordinary, State-Based Plasticity Model for Peridynamics , 2011 .

[84]  Richard Fowles,et al.  Plane Stress Wave Propagation in Solids , 1970 .

[85]  Vito Diana,et al.  Modelling laminated glass beam failure via stochastic rigid body-spring model and bond-based peridynamics , 2017 .

[86]  Joshua A. Levine,et al.  A peridynamic perspective on spring-mass fracture , 2014, SCA '14.

[87]  M. Kharazi,et al.  A peridynamic plastic model based on von Mises criteria with isotropic, kinematic and mixed hardenings under cyclic loading , 2019, International Journal of Mechanical Sciences.

[88]  Mark P. Mobach Impact by design , 2019 .

[89]  S. Silling Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces , 2000 .

[90]  D. Roy,et al.  A thermodynamically consistent peridynamics model for visco-plasticity and damage , 2019, Computer Methods in Applied Mechanics and Engineering.

[91]  M. Lévesque,et al.  Generalization of the ordinary state-based peridynamic model for isotropic linear viscoelasticity , 2017 .

[92]  Jung-Wuk Hong,et al.  A coupling approach of discretized peridynamics with finite element method , 2012 .

[93]  E. Madenci,et al.  Impact damage assessment by using peridynamic theory , 2012 .

[94]  John Anthony Mitchell,et al.  A non-local, ordinary-state-based viscoelasticity model for peridynamics. , 2011 .

[95]  James S Wilbeck,et al.  Impact Behavior of Low Strength Projectiles , 1978 .

[96]  Erdogan Madenci,et al.  Weak form of bond-associated non-ordinary state-based peridynamics free of zero energy modes with uniform or non-uniform discretization , 2019, Engineering Fracture Mechanics.

[97]  E. Kröner,et al.  Elasticity theory of materials with long range cohesive forces , 1967 .

[98]  A. C. Fischer-Cripps,et al.  The Hertzian contact surface , 1999 .

[99]  A. C. Eringen,et al.  Crack-tip problem in non-local elasticity , 1977 .

[100]  Julian J. Rimoli,et al.  An approach for incorporating classical continuum damage models in state-based peridynamics , 2013 .

[101]  Dahsin Liu,et al.  Peridynamic modelling of impact damage in three-point bending beam with offset notch , 2017 .

[102]  Youn Doh Ha,et al.  Damage progression from impact in layered glass modeled with peridynamics , 2012 .

[103]  Holly O. Witteman,et al.  Modeling of Impact Dynamics: A Literature Survey , 2000 .

[104]  Jian Yu,et al.  Impact damage on a thin glass plate with a thin polycarbonate backing , 2013 .

[105]  W. Fang,et al.  Molecular dynamics simulation of grain boundary geometry on crack propagation of bi-crystal aluminum , 2016 .

[106]  Guohua Zhou,et al.  A non-ordinary state-based Godunov-peridynamics formulation for strong shocks in solids , 2020 .

[107]  P. Qiao,et al.  Impact Mechanics and High-Energy Absorbing Materials: Review , 2008 .

[108]  S. Silling,et al.  A meshfree method based on the peridynamic model of solid mechanics , 2005 .

[109]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[110]  I. Kunin,et al.  Elastic Media with Microstructure I: One-Dimensional Models , 1982 .

[111]  Jaime Planas,et al.  Mixed Mode Fracture of Concrete under Proportional and Nonproportional Loading , 1998 .

[112]  M. Mazzotti,et al.  Miconazole nanosuspensions: Influence of formulation variables on particle size reduction and physical stability. , 2010, International journal of pharmaceutics.

[113]  Milan Jirásek,et al.  Nonlocal integral formulations of plasticity and damage : Survey of progress , 2002 .

[114]  John T. Foster,et al.  State based peridynamic modeling of dynamic fracture , 2009 .

[115]  Xiaoping Zhou,et al.  Numerical simulation of propagation and coalescence of flaws in rock materials under compressive loads using the extended non-ordinary state-based peridynamics , 2016 .

[116]  A. C. Eringen,et al.  Nonlocal polar elastic continua , 1972 .

[117]  S. Silling,et al.  Peridynamic States and Constitutive Modeling , 2007 .

[118]  Erkan Oterkus,et al.  Peridynamics review , 2018, Mathematics and Mechanics of Solids.

[119]  S. Silling,et al.  Determination of Ballistic Limit of Skin-Stringer Panels Using Nonlinear, Strain-Rate Dependent Peridynamics , 2019, AIAA Scitech 2019 Forum.

[120]  Jooeun Lee,et al.  Impact fracture analysis enhanced by contact of peridynamic and finite element formulations , 2016 .

[121]  S. Silling,et al.  Peridynamics for analysis of failure in advanced composite materials , 2015 .

[122]  John T. Foster,et al.  On the stability of the generalized, finite deformation correspondence model of peridynamics , 2019, International Journal of Solids and Structures.

[123]  Mirco Zaccariotto,et al.  Coupling of 2D discretized Peridynamics with a meshless method based on classical elasticity using switching of nodal behaviour , 2017 .

[124]  David Nash,et al.  Numerical modelling of hailstone impact on the leading edge of a wind turbine blade , 2013 .

[125]  Dan Huang,et al.  A rate-dependent dynamic damage model in peridynamics for concrete under impact loading , 2020 .

[126]  S. Zwaag,et al.  Rain Erosion Damage in Brittle Materials , 1983 .

[127]  Erdogan Madenci,et al.  Peridynamic Differential Operator for Numerical Analysis , 2019 .

[128]  J. Reddy,et al.  A peridynamic model for plasticity: Micro-inertia based flow rule, entropy equivalence and localization residuals , 2017 .

[129]  P. Demmie An Approach to Modeling Extreme Loading of Structures using Peridynamics , 2006 .

[130]  Shaofan Li,et al.  A non-ordinary state-based peridynamics modeling of fractures in quasi-brittle materials , 2018 .

[131]  M. Ostoja-Starzewski,et al.  Local and nonlocal material models, spatial randomness, and impact loading , 2016 .

[132]  John T. Foster,et al.  A semi-Lagrangian constitutive correspondence framework for peridynamics , 2020 .

[133]  Erdogan Madenci,et al.  Numerical solution of linear and nonlinear partial differential equations using the peridynamic differential operator , 2017 .

[134]  Mengu Cho,et al.  Influence of space debris impact on solar array under power generation , 2008 .

[135]  John T. Foster,et al.  Dynamic crack initiation toughness : experiments and peridynamic modeling. , 2009 .

[136]  Erdogan Madenci,et al.  Weak form of peridynamics for nonlocal essential and natural boundary conditions , 2018, Computer Methods in Applied Mechanics and Engineering.

[137]  E. Madenci,et al.  Peridynamic Truss Element for Viscoelastic Deformation , 2016 .

[138]  Nik Abdullah Nik Mohamed,et al.  Viscoelastic material models in peridynamics , 2013, Appl. Math. Comput..

[139]  Yunteng Wang,et al.  Numerical simulation of initiation, propagation and coalescence of cracks using the non-ordinary state-based peridynamics , 2016, International Journal of Fracture.

[140]  Mirco Zaccariotto,et al.  An effective way to couple FEM meshes and Peridynamics grids for the solution of static equilibrium problems , 2016 .

[141]  Selda Oterkus,et al.  Ordinary state-based peridynamics for plastic deformation according to von Mises yield criteria with isotropic hardening , 2016 .

[142]  E. Petriu,et al.  Debris impact forces on flexible structures in extreme hydrodynamic conditions , 2019, Journal of Fluids and Structures.

[143]  Ibrahim Guven,et al.  Peridynamic modeling of damage and fracture in EM windows and domes , 2015, Defense + Security Symposium.

[144]  Erkan Oterkus,et al.  Peridynamic Theory and Its Applications , 2013 .

[145]  E. Madenci,et al.  Thermomechanical peridynamic analysis with irregular non-uniform domain discretization , 2018, Engineering Fracture Mechanics.

[146]  L. Andena,et al.  Modelling mixed-mode fracture in poly(methylmethacrylate) using peridynamics , 2016 .

[147]  F. Bobaru,et al.  Uncovering the dynamic fracture behavior of PMMA with peridynamics: The importance of softening at the crack tip , 2019, Engineering Fracture Mechanics.

[148]  S. Silling,et al.  Determination of Ballistic Limit for IM7/8552 Using Peridynamics , 2018 .

[149]  Erdogan Madenci,et al.  A state-based peridynamic analysis in a finite element framework , 2018 .

[150]  Qing Zhang,et al.  Wave dispersion analysis and simulation method for concrete SHPB test in peridynamics , 2016 .