Revealing Secrets in SPARQL Session Level

Based on Semantic Web technologies, knowledge graphs help users to discover information of interest by using live SPARQL services. Answer-seekers often examine intermediate results iteratively and modify SPARQL queries repeatedly in a search session. In this context, understanding user behaviors is critical for effective intention prediction and query optimization. However, these behaviors have not yet been researched systematically at the SPARQL session level. This paper reveals secrets of session-level user search behaviors by conducting a comprehensive investigation over massive real-world SPARQL query logs. In particular, we thoroughly assess query changes made by users w.r.t. structural and data-driven features of SPARQL queries. To illustrate the potentiality of our findings, we employ an application example of how to use our findings, which might be valuable to devise efficient SPARQL caching, auto-completion, query suggestion, approximation, and relaxation techniques in the future.

[1]  Grace Hui Yang,et al.  Utilizing query change for session search , 2013, SIGIR.

[2]  Gerd Gröner,et al.  Which of the following SPARQL Queries are Similar? Why? , 2013, LD4IE@ISWC.

[3]  Markus Krötzsch,et al.  Practical Linked Data Access via SPARQL: The Case of Wikidata , 2018, LDOW@WWW.

[4]  Pablo de la Fuente,et al.  An Empirical Study of Real-World SPARQL Queries , 2011, ArXiv.

[5]  Abraham Bernstein,et al.  The Fundamentals of iSPARQL: A Virtual Triple Approach for Similarity-Based Semantic Web Tasks , 2007, ISWC/ASWC.

[6]  Jens Lehmann,et al.  AutoSPARQL: Let Users Query Your Knowledge Base , 2011, ESWC.

[7]  Dave Kolas,et al.  Enabling the geospatial Semantic Web with Parliament and GeoSPARQL , 2012, Semantic Web.

[8]  Yiqun Liu,et al.  Investigating Cognitive Effects in Session-level Search User Satisfaction , 2019, KDD.

[9]  Wim Martens,et al.  Navigating the Maze of Wikidata Query Logs , 2019, WWW.

[10]  Wim Martens,et al.  An Analytical Study of Large SPARQL Query Logs , 2017, Proc. VLDB Endow..

[11]  Felix Conrads,et al.  How Representative Is a SPARQL Benchmark? An Analysis of RDF Triplestore Benchmarks , 2019, WWW.

[12]  Gavin Powell,et al.  Towards Fuzzy Query-Relaxation for RDF , 2012, ESWC.

[13]  Siegfried Handschuh,et al.  Recipes for Semantic Web Dog Food - The ESWC and ISWC Metadata Projects , 2007, ISWC/ASWC.

[14]  Giovanni Tummarello,et al.  Introducing RDF Graph Summary with Application to Assisted SPARQL Formulation , 2012, 2012 23rd International Workshop on Database and Expert Systems Applications.

[15]  Jens Lehmann,et al.  DBpedia - A crystallization point for the Web of Data , 2009, J. Web Semant..

[16]  Felix Naumann,et al.  Detecting SPARQL Query Templates for Data Prefetching , 2013, ESWC.

[17]  Muhammad Saleem,et al.  FEASIBLE: A Feature-Based SPARQL Benchmark Generation Framework , 2015, SEMWEB.

[18]  Nicole Tourigny,et al.  Bio2RDF: Towards a mashup to build bioinformatics knowledge systems , 2008, J. Biomed. Informatics.

[19]  Jens Lehmann,et al.  LinkedGeoData: A core for a web of spatial open data , 2012, Semantic Web.

[20]  Muhammad Saleem,et al.  LSQ: The Linked SPARQL Queries Dataset , 2015, SEMWEB.

[21]  Jürgen Ziegler,et al.  Pattern-Based Analysis of SPARQL Queries from the LSQ Dataset , 2017, International Semantic Web Conference.

[22]  Stijn Vansummeren,et al.  What are real SPARQL queries like? , 2011, SWIM '11.

[23]  María S. Pérez-Hernández,et al.  Machine Learning-based Query Augmentation for SPARQL Endpoints , 2018, WEBIST.

[24]  Aravindan Raghuveer,et al.  Characterizing Machine Agent Behavior through SPARQL Query Mining , 2012 .

[25]  Meng Wang,et al.  Towards Empty Answers in SPARQL: Approximating Querying with RDF Embedding , 2018, SEMWEB.

[26]  M. Tamer Özsu,et al.  Diversified Stress Testing of RDF Data Management Systems , 2014, SEMWEB.

[27]  Axel-Cyrille Ngonga Ngomo,et al.  LargeRDFBench: A billion triples benchmark for SPARQL endpoint federation , 2018, J. Web Semant..