Process of Personalizing the Ubiquitous Advertisements

Inthispaper,weproposeanapproachcombiningbehavioralandtargetingtechniquesforabetter reactionofthecustomerwithastarproductusingapersonalizedubiquitousadvertisement.Weusethe clusteringtostudythecustomer’sbehaviorandtheassociationrulestoestimatetheprobabilityofstar product’spurchasesinthenearfuture.Inordertovalidateourapproach,wedevelopaprototypetosend apersonalizedadvertisementtoloyalcustomersandpotentialcustomersinubiquitousenvironment. Eachtargetreceivestheadvertisingaccordinghisclassificationandhisdegreeofloyaltyobtained bythebehavioralanalysis.Loyalcustomersarethefirsttoreceivethepersonalizedadvertisingin theubiquitousenvironment. KeywoRdS Behavioral Analysis, Customer Profile, Loyal Customer, Mobile Advertisement, Mobile Marketing, Personalized Advertisement, Potential Customer, Star Product, Ubiquitous Advertisement, Ubiquitous Marketing

[1]  Nadia H. Jiménez,et al.  The firms benefits of mobile CRM from the relationship marketing approach and the TOE model , 2016 .

[2]  Abdelkader El Kamel,et al.  Itinerary optimisation approach inside hypermarkets , 2011, 2011 11th International Conference on Intelligent Systems Design and Applications.

[3]  Sylvia M. Chan-Olmsted,et al.  Perceived Effectiveness and Business Structure among Advertising Agencies: A Case Study of Mobile Advertising in South Korea , 2010 .

[4]  Zied Zaïer Modèle multi-agents pour le filtrage collaboratif de l'information , 2010 .

[5]  Horng-Jinh Chang,et al.  An anticipation model of potential customers' purchasing behavior based on clustering analysis and association rules analysis , 2007, Expert systems with applications.

[6]  Peter Wai-Ming Tsang,et al.  eXploratory K-Means: A new simple and efficient algorithm for gene clustering , 2012, Appl. Soft Comput..

[7]  Ashok Kumar Das,et al.  An efficient approach for mining association rules from high utility itemsets , 2015, Expert Syst. Appl..

[8]  Yafeng Yin,et al.  CrowdSensing: A crowd-sourcing based indoor navigation using RFID-based delay tolerant network , 2015, J. Netw. Comput. Appl..

[9]  Esther Swilley,et al.  From Firm-Controlled to Consumer-Contributed: Consumer Co-Production of Personal Media Marketing Communication , 2014 .

[10]  Rafi Ahmad Khan,et al.  Data Mining for Marketing , 2015 .

[11]  João Barroso,et al.  Context aware middleware in ambient intelligent environments , 2015, Int. J. Comput. Sci. Eng..

[12]  Makhalova Elena FUZZY C - MEANS CLUSTERING IN MATLAB , 2013 .

[13]  Marcos Borges,et al.  More Collaboration, More Collective Intelligence , 2015, Int. J. Knowl. Soc. Res..

[14]  Choy-Har Wong,et al.  Mobile advertising: The changing landscape of the advertising industry , 2015, Telematics Informatics.

[15]  Bart Baesens,et al.  A new knowledge-based constrained clustering approach: Theory and application in direct marketing , 2014, Appl. Soft Comput..

[16]  Stephen Shaoyi Liao,et al.  A prediction framework based on contextual data to support Mobile Personalized Marketing , 2013, Decis. Support Syst..

[17]  Alireza Sahami Shirazi,et al.  Digifieds: Evaluating Suitable Interaction Techniques for Shared Public Notice Areas , 2011 .

[18]  Alan Ouakrat,et al.  Publicité en ligne sur les sites de presse issus de l'imprimé. Construction du marché, logiques de fonctionnement et perspectives d'évolution , 2011 .

[19]  Sajad Rezaei,et al.  Segmenting consumer decision-making styles (CDMS) toward marketing practice: A partial least squares (PLS) path modeling approach , 2015 .

[20]  Philipp Reichhart,et al.  Identifying factors influencing the customers purchase behaviour due to location-based promotions , 2014, Int. J. Mob. Commun..

[21]  Qian Zhang,et al.  Privacy preservation in location-based advertising: A contract-based approach , 2015, Comput. Networks.

[22]  Pierre Hansen,et al.  NP-hardness of Euclidean sum-of-squares clustering , 2008, Machine Learning.

[23]  Tao Li,et al.  A decision-making framework for precision marketing , 2015, Expert Syst. Appl..

[24]  Alicia Izquierdo Yusta,et al.  Attitudes toward mobile advertising among users versus non-users of the mobile Internet , 2015, Telematics Informatics.

[25]  Witold Pedrycz,et al.  An improved association rules mining method , 2012, Expert Syst. Appl..