Landau damping of quantum plasmons in metal nanostructures

Using the random phase approximation with both real space and discrete electron–hole (e–h) pair basis sets, we study the broadening of surface plasmons in metal structures of reduced dimensionality, where Landau damping is the dominant dissipation channel and presents an intrinsic limitation to plasmonics technology. We show that for every prototypical class of systems considered, including zero-dimensional nanoshells, one-dimensional coaxial nanotubes and two-dimensional ultrathin films, Landau damping can be drastically tuned due to energy quantization of the individual electron levels and e–h pairs. Both the generic trend and oscillatory nature of the tunability are in stark contrast with the expectations of the semiclassical surface scattering picture. Our approach also allows to vividly depict the evolution of the plasmons from the quantum to the classical regime, and to elucidate the underlying physical origin of hybridization broadening of nearly degenerate plasmon modes. These findings may serve as a guide in the future design of plasmonic nanostructures of desirable functionalities.

[1]  D. Langreth,et al.  Deep-Hole Excitations in Solids. I. Fast-Electron-Plasmon Effects , 1972 .

[2]  D. Rowe METHODS FOR CALCULATING GROUND-STATE CORRELATIONS OF VIBRATIONAL NUCLEI. , 1968 .

[3]  P. Nordlander,et al.  A Hybridization Model for the Plasmon Response of Complex Nanostructures , 2003, Science.

[4]  P. Nordlander,et al.  Effects of dielectric screening on the optical properties of metallic nanoshells , 2003 .

[5]  E. V. Chulkov,et al.  Theory of surface plasmons and surface-plasmon polaritons , 2007 .

[6]  S. Drożdż,et al.  The nuclear response within extended RPA theories , 1990 .

[7]  Andrew Zangwill,et al.  Density-functional approach to local-field effects in finite systems: Photoabsorption in the rare gases , 1980 .

[8]  Liebsch Surface plasmon dispersion of Ag. , 1993, Physical review letters.

[9]  Jeremy J. Baumberg,et al.  Revealing the quantum regime in tunnelling plasmonics , 2012, Nature.

[10]  U. Kreibig,et al.  The limitation of electron mean free path in small silver particles , 1969 .

[11]  D. Weinmann,et al.  Oscillatory size dependence of the surface plasmon linewidth in metallic nanoparticles , 2001, cond-mat/0107524.

[12]  E. Chulkov,et al.  Band structure versus dynamical exchange-correlation effects in surface plasmon energy and damping: a first-principles calculation. , 2004, Physical review letters.

[13]  Javier Aizpurua,et al.  Bridging quantum and classical plasmonics with a quantum-corrected model , 2012, Nature Communications.

[14]  S. Kawata,et al.  Optical chemical sensor based on surface plasmon measurement. , 1988, Applied optics.

[15]  P. Nordlander,et al.  The effect of a dielectric core and embedding medium on the polarizability of metallic nanoshells , 2002 .

[16]  Acoustic surface plasmons in the noble metals Cu, Ag, and Au , 2005, cond-mat/0508725.

[17]  Manninen,et al.  Electronic polarizability of small metal spheres. , 1985, Physical review. B, Condensed matter.

[18]  van Giai N,et al.  Towards a self-consistent random-phase approximation for Fermi systems. , 1996, Physical review. B, Condensed matter.

[19]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[20]  F. Catara,et al.  Particle-hole excitations within a self-consistent random-phase approximation , 2008 .

[21]  Emil Prodan,et al.  Electronic structure and polarizability of metallic nanoshells , 2002 .

[22]  Nikolay I. Zheludev,et al.  Ultrafast active plasmonics: transmission and control of femtosecond plasmon signals , 2008 .

[23]  Zhe Yuan,et al.  Linear-response study of plasmon excitation in metallic thin films: Layer-dependent hybridization and dispersion , 2006 .

[24]  Liebsch Surface-plasmon dispersion and size dependence of Mie resonance: Silver versus simple metals. , 1993, Physical review. B, Condensed matter.

[25]  Wenzel,et al.  Decay times of surface plasmon excitation in metal nanoparticles by persistent spectral hole burning , 2000, Physical review letters.

[26]  Plasmon Lifetime in K: A Case Study of Correlated Electrons in Solids Amenable to Ab Initio Theory , 1998, cond-mat/9811281.

[27]  D. Langreth,et al.  Deep-Hole Excitations in Solids. II. Plasmons and Surface Effects in X-Ray Photoemission , 1973 .

[28]  E. Ozbay Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions , 2006, Science.

[29]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[30]  M. Grasso,et al.  Extension of the second random-phase approximation , 2006 .

[31]  Lifetime of the first and second collective excitations in metallic nanoparticles , 2005, cond-mat/0506320.

[32]  C. Haynes,et al.  Nanosphere lithography: Tunable localized surface plasmon resonance spectra of silver nanoparticles , 2000 .

[33]  A. Eguiluz Dynamical Density Response Function of a Metal Film in the Random-Phase Approximation , 1983 .

[34]  Xiangang Luo,et al.  Surface plasmon resonant interference nanolithography technique , 2004 .

[35]  Karen Willcox,et al.  Kinetics and kinematics for translational motions in microgravity during parabolic flight. , 2009, Aviation, space, and environmental medicine.

[36]  V. U. Nazarov,et al.  Theory of acoustic surface plasmons , 2004, cond-mat/0409026.

[37]  U. Heinzmann,et al.  Spin–orbit-induced photoelectron spin polarization in angle-resolved photoemission from both atomic and condensed matter targets , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[38]  Q. Luo,et al.  Subwavelength nanolithography using surface plasmons , 2003, 2003 Third IEEE Conference on Nanotechnology, 2003. IEEE-NANO 2003..

[39]  David J Rowe,et al.  Microscopic theory of the nuclear collective model , 1985 .

[40]  Persson,et al.  Dynamic polarizability of small metal particles. , 1987, Physical review. B, Condensed matter.

[41]  Zhe Yuan,et al.  Landau damping and lifetime oscillation of surface plasmons in metallic thin films studied in a jellium slab model , 2008 .

[42]  Ekardt Size-dependent photoabsorption and photoemission of small metal particles. , 1985, Physical review. B, Condensed matter.

[43]  Emil Prodan,et al.  Quantum description of the plasmon resonances of a nanoparticle dimer. , 2009, Nano letters.

[44]  Hongxing Xu,et al.  Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering , 1999 .

[45]  Bréchignac,et al.  Optical response of large lithium clusters: Evolution toward the bulk. , 1993, Physical review letters.

[46]  J. Dionne,et al.  Quantum plasmon resonances of individual metallic nanoparticles , 2012, Nature.

[47]  Thomas A. Klar,et al.  Surface-Plasmon Resonances in Single Metallic Nanoparticles , 1998 .

[48]  P. Nordlander,et al.  Plasmon hybridization in spherical nanoparticles. , 2004, The Journal of chemical physics.

[49]  A. V. Nikolaev,et al.  The puzzle of the $ \gamma\to\alpha$ and other phase transitions in cerium , 2012 .

[50]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[51]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[52]  J. Wambach Damping of small-amplitude nuclear collective motion , 1988 .

[53]  Emil Prodan,et al.  Structural Tunability of the Plasmon Resonances in Metallic Nanoshells , 2003 .

[54]  Eguiluz Self-consistent static-density-response function of a metal surface in density-functional theory. , 1985, Physical review. B, Condensed matter.

[55]  Arisato Kawabata,et al.  Electronic Properties of Fine Metallic Particles. II. Plasma Resonance Absorption , 1966 .

[56]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[57]  P. Echenique,et al.  Time-dependent screening of a point charge at a metal surface , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.