Hysteresis Modeling in Magnetostrictive Materials Via Preisach Operators

Abstract : A phenomenological characterization of hysteresis in magnetostrictive materials is presented. Such hysteresis is due to both the driving magnetic fields and stress relations within the material and is significant throughout most of the drive range of magnetostrictive transducers. An accurate characterization of the hysteresis and material nonlinearities is necessary to fully utilize the actuator/sensor capabilities of the magnetostrictive materials. Such a characterization is made here in the context of generalized Preisach operators. This yields a framework amenable to proving the well-posedness of structural models that incorporate the magnetostrictive transducers. It also provides a natural setting in which to develop practical approximation techniques. An example illustrating this framework in the context of a Timoshenko beam model is presented.

[1]  A. Visintin Differential models of hysteresis , 1994 .

[2]  Göran Engdahl,et al.  A phenomenological magnetomechanical hysteresis model , 1994 .

[3]  Kurt Wiesen,et al.  Vector Preisach modeling , 1987 .

[4]  D. Jiles Theory of the magnetomechanical effect , 1995 .

[5]  D. Jiles,et al.  Theory of ferromagnetic hysteresis , 1986 .

[6]  Alison B. Flatau,et al.  Nonlinearities, harmonics, and trends in dynamic applications of Terfenol-D , 1993, Smart Structures.

[7]  Aphrodite Ktena,et al.  Vector Preisach modeling (invited) , 1993 .

[8]  Kazufumi Ito,et al.  Well posedness for damped second-order systems with unbounded input operators , 1995, Differential and Integral Equations.

[9]  Harvey Thomas Banks,et al.  Smart material structures: Modeling, estimation, and control , 1996 .

[10]  Hybrid boundary-volume Galerkin's method for solution of magnetostatic problems with hysteresis , 1993 .

[11]  Harvey Thomas Banks,et al.  Identification of Hysteretic Control Influence Operators Representing Smart Actuators Part I: Formulation , 1997 .

[12]  Frederick T. Calkins,et al.  Transducer-based measurements of Terfenol-D material properties , 1996, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[13]  A. J. Freeman,et al.  Journal of Magnetism and Magnetic Materials. Volumes 198-199, 1 June 1999, , 1999 .

[14]  M. Krasnosel’skiǐ,et al.  Systems with Hysteresis , 1989 .

[15]  Alison B. Flatau,et al.  Broadband Performance of a Magnetostrictive Shaker , 1995 .

[16]  D. Jiles,et al.  Numerical determination of hysteresis parameters for the modeling of magnetic properties using the theory of ferromagnetic hysteresis , 1992 .

[17]  Trémolet de Lacheisserie,et al.  Magnetostriction : theory and applications of magnetoelasticity , 1993 .

[18]  W. Cao,et al.  Smart materials and structures. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Amr A. Adly,et al.  A new vector Preisach‐type model of hysteresis , 1993 .

[20]  I. Mayergoyz,et al.  Preisach modeling of magnetostrictive hysteresis , 1991 .

[21]  Harvey Thomas Banks,et al.  Estimation of growth rate distributions in size structured population models , 1991 .

[22]  Karl Kunisch,et al.  Estimation Techniques for Distributed Parameter Systems , 1989 .