Membrane reactors for hydrogenation and dehydrogenation processes based on supported palladium

Abstract Membrane reactors applied to catalytic reactions are currently being studied in many places world-wide. Significant developments in membrane science and the vision of process intensification by multifunctional reactors have stimulated a lot of academic and industrial research, which is impressively demonstrated by more than 100 scientific papers on catalytic membrane reactors being published per year. Palladium as a noble metal with exceptional hydrogen permeation properties and, at the same time, broad applicability as a catalyst, first of all for hydrogenation, is part of many of these developments. This paper discusses two different membrane reactor concepts which both rely on supported palladium, on the one hand as a permselective membrane material, and on the other hand as base component of a membrane-type hydrogenation catalyst. Dense palladium composite membranes can be used for hydrogen separation from packed-bed catalysts in gas-phase hydrocarbon dehydrogenation reactions. Mesoporous membranes containing dispersed bimetallic Pd/X-clusters can be employed as so-called catalytic diffusers for liquid-phase hydrogenation, e.g. of nitrate and nitrite in water. The principles of both concepts are introduced, recently obtained experimental data are evaluated in connection with literature results, and the perspectives for further development are highlighted.

[1]  R. Dittmeyer,et al.  CVD preparation of catalytic membranes for reduction of nitrates in water , 2001 .

[2]  Arvind Varma,et al.  Novel preparation techniques for thin metal-ceramic composite membranes , 1995 .

[3]  Shigeyuki Uemiya,et al.  Steam reforming of methane in a hydrogen-permeable membrane reactor , 1990 .

[4]  Kamalesh K. Sirkar,et al.  Membrane in a reactor: A functional perspective , 1999 .

[5]  J. Armor Membrane catalysis: Where is it now, what needs to be done? , 1995 .

[6]  R. Dittmeyer,et al.  Preparation and characterization of palladium composite membranes for hydrogen removal in hydrocarbon dehydrogenation membrane reactors , 2001 .

[7]  Robert E. Buxbaum,et al.  Hydrogen transport through tubular membranes of palladium-coated tantalum and niobium , 1996 .

[8]  H. Brunner,et al.  Preparation of palladium composite membranes by modified electroless plating procedure , 1998 .

[9]  N. Sato,et al.  The water gas shift reaction assisted by a palladium membrane reactor , 1991 .

[10]  A. Baiker,et al.  Dehydrogenation of methylcyclohexane to toluene in a pilot-scale membrane reactor , 1997 .

[11]  Hideaki Maeda,et al.  Preparation of palladium-silver alloy membranes for hydrogen separation by the spray pyrolysis method , 1993 .

[12]  A. Lecloux Chemical, biological and physical constrains in catalytic reduction processes for purification of drinking water , 1999 .

[13]  I. R. Harris,et al.  Hydrogen Diffusion Membranes based on some Palladium-Rare Earth Solid Solution Alloys , 1979 .

[14]  J. Luyten,et al.  Membrane performance: the key issues for dehydrogenation reactions in a catalytic membrane reactor , 2000 .

[15]  A. Varma,et al.  Effects of osmosis on microstructure of Pd-composite membranes synthesized by electroless plating technique , 2000 .

[16]  John P. Collins,et al.  Catalytic Dehydrogenation of Propane in Hydrogen Permselective Membrane Reactors , 1996 .

[17]  J. Levec,et al.  Potential of mono- and bimetallic catalysts for liquid-phase hydrogenation of aqueous nitrite solutions , 1998 .

[18]  Geert Versteeg,et al.  High-temperature membrane reactors: potential and problems , 1999 .

[19]  K. Y. Foo,et al.  A New Preparation Technique for Pd/Alumina Membranes with Enhanced High-Temperature Stability , 1999 .

[20]  Vito Specchia,et al.  Catalytic inorganic membrane reactors: present experience and future opportunities , 1994 .

[21]  Aihua Qi,et al.  Propene oligomerization catalyst derived from nickel sulfate supported on γ-alumina , 1991 .

[22]  R. Dittmeyer,et al.  Catalytic dehydrogenation of hydrocarbons in palladium composite membrane reactors , 2000 .

[23]  N. Xu,et al.  Preparation of a Palladium Composite Membrane by an Improved Electroless Plating Technique , 2000 .

[24]  D. Rippin,et al.  Exceeding equilibrium conversion with a catalytic membrane reactor for the dehydrogenation of methylcyclohexane , 1994 .

[25]  K. Vorlop,et al.  Katalytische Nitratentfernung aus Wässern mit Ameisensäure als Reduktionsmittel , 1997 .

[26]  D. Rippin,et al.  EFFECT OF REACTION AND PERMEATION RATES ON THE PERFORMANCE OF A CATALYTIC MEMBRANE REACTOR FOR METHYLCYCLOHEXANE DEHYDROGENATION , 1994 .

[27]  L. Nosova,et al.  Catalytic membrane in reduction of aqueous nitrates: operational principles and catalytic performance , 2000 .

[28]  Y. S. Lin,et al.  CVD synthesis and gas permeation properties of thin palladium/alumina membranes , 1998 .

[29]  S. Nam,et al.  Preparation of a palladium alloy composite membrane supported in a porous stainless steel by vacuum electrodeposition , 1999 .

[30]  Bernard P. A. Grandjean,et al.  Catalytic palladium‐based membrane reactors: A review , 1991 .

[31]  Robert C. Dye,et al.  Composite PdTa metal membranes for hydrogen separation , 1996 .

[32]  Geert Versteeg,et al.  Current hurdles to the success of high temperature membrane reactorS , 1994 .

[33]  D. Edlund,et al.  The relationship between intermetallic diffusion and flux decline in composite-metal membranes: implications for achieving long membrane lifetime , 1995 .

[34]  F. Schmidt,et al.  Factors controlling the performance of catalytic dehydrogenation of ethylbenzene in palladium composite membrane reactors , 1999 .

[35]  Robert E. Buxbaum,et al.  Palladium-catalyzed oxidative diffusion for tritium extraction from breeder-blanket fluids at low concentrations , 1986 .

[36]  B. Wood Dehydrogenation of cyclohexane on a hydrogen-porous membrane , 1968 .

[37]  U. Prüße,et al.  Improving the catalytic nitrate reduction , 2000 .

[38]  K. Vorlop,et al.  Kinetic investigation of the catalytic nitrate reduction : Construction of the test reactor system , 1999 .

[39]  Shigeyuki Uemiya,et al.  State-of-the-Art of Supported Metal Membranes for Gas Separation , 1999 .

[40]  J. Armor,et al.  Catalysis with permselective inorganic membranes , 1989 .

[41]  R. Hughes,et al.  Fabrication of dense palladium composite membranes for hydrogen separation , 2000 .

[42]  N. Xu,et al.  Novel method for preparing palladium membranes by photocatalytic deposition , 2000 .

[43]  Amit Chakma,et al.  Inorganic membrane reactors , 1994 .

[44]  J. Hayashi,et al.  Development of supported thin palladium membrane and application to enhancement of propane aromatization on Ga-silicate catalyst , 1996 .

[45]  Yi Hua Ma,et al.  Defect‐free palladium membranes on porous stainless‐steel support , 1998 .

[46]  N. Itoh,et al.  Limiting conversions of dehydrogenation in palladium membrane reactors , 1995 .

[47]  K. Vorlop,et al.  Einfluß der Präparationsbedingungen auf die Eigenschaften von Bimetallkatalysatoren zur Nitratentfernung aus Wasser , 1997 .

[48]  Weiqiang Liang,et al.  The effect of carbon monoxide and steam on the hydrogen permeability of a Pd/stainless steel membrane , 2000 .

[49]  J. Way,et al.  Preparation and characterization of a composite palladium-ceramic membrane , 1993 .

[50]  R. Farrauto,et al.  Catalytic converters: state of the art and perspectives , 1999 .

[51]  Thomas Graham,et al.  XVIII. On the absorption and dialytic separation of gases by colloid septa , 1866, Philosophical Transactions of the Royal Society of London.

[52]  Naceur Jemaa,et al.  Thin Palladium Film Formation on Shot Peening Modified Porous Stainless Steel Substrates , 1996 .

[53]  Yuehe Lin,et al.  Fabrication of thin metallic membranes by MOCVD and sputtering , 1997 .

[54]  G. Holleck Diffusion and solubility of hydrogen in palladium and palladium--silver alloys , 1970 .

[55]  J. Luyten,et al.  Dehydrogenation of propane using a packed-bed catalytic membrane reactor , 1997 .

[56]  Jesus Santamaria,et al.  Catalytic reactors based on porous ceramic membranes , 1999 .

[57]  T. Kojima,et al.  Composite membranes of group VIII metal supported on porous alumina , 1997 .

[58]  G. Alefeld,et al.  Hydrogen in Metals I , 1978 .

[59]  R. Dittmeyer,et al.  Studies on the use of catalytic membranes for reduction of nitrate in drinking water , 1999 .

[60]  R. Hughes,et al.  An experimental evaluation of high-temperature composite membrane systems for propane dehydrogenation , 1997 .

[61]  M. Huff,et al.  Oxidation of isobutane over supported noble metal catalysts in a palladium membrane reactor , 2000 .

[62]  J. N. Armor,et al.  Applications of catalytic inorganic membrane reactors to refinery products , 1998 .

[63]  J. Levec,et al.  Kinetics of the catalytic liquid-phase hydrogenation of aqueous nitrate solutions , 1996 .

[64]  F. Keil,et al.  Molecular dynamics calculations and Monte Carlo simulation of diffusivities in aqueous systems : application to nitrate reduction on bimetal catalyst immobilized in poly(vinyl alcohol)-hydrogel , 1998 .

[65]  Francesco Pinna,et al.  Use of palladium based catalysts in the hydrogenation of nitrates in drinking water: from powders to membranes , 2000 .

[66]  R. Hughes,et al.  Characterisation and permeation of palladium/stainless steel composite membranes , 1998 .

[67]  Shigeyuki Uemiya,et al.  Separation of hydrogen through palladium thin film supported on a porous glass tube , 1991 .

[68]  R. Buxbaum,et al.  Hydrogen transport through non-porous membranes of palladium-coated niobium, tantalum and vanadium , 1993 .

[69]  K. Kusakabe,et al.  Thin Palladium Membrane Formed in Support Pores by Metal-Organic Chemical Vapor Deposition Method and Application to Hydrogen Separation , 1994 .

[70]  Yuehe Lin,et al.  Synthesis and hydrogen permeation properties of ultrathin palladium-silver alloy membranes , 1995 .

[71]  M. Sheintuch,et al.  Observations, modeling and optimization of yield, selectivity and activity during dehydrogenation of isobutane and propane in a Pd membrane reactor , 1996 .

[72]  V. Raman,et al.  Hydrogen infrastructure for fuel cell transportation , 1998 .

[73]  E. Kikuchi,et al.  Preparation of supported thin palladium-silver alloy membranes and their characteristics for hydrogen separation , 1991 .

[74]  M. Ermilova,et al.  Preparation and catalysis over palladium composite membranes , 1993 .

[75]  N. Itoh,et al.  A membrane reactor using palladium , 1987 .

[76]  Bernard P. A. Grandjean,et al.  Methane steam reforming in asymmetric Pd- and Pd-Ag/porous SS membrane reactors , 1994 .

[77]  M. Kröger,et al.  Preparation of microscopic catalysts and colloids for catalytic nitrate and nitrite reduction and their use in a hollow fibre dialyser loop reactor , 1998 .

[78]  F. Pinna,et al.  Sol gel palladium catalysts for nitrate and nitrite removal from drinking water , 1996 .

[79]  K. Vorlop,et al.  Development of catalysts for a selective nitrate and nitrite removal from drinking water , 1993 .

[80]  K. Vorlop,et al.  Erste Schritte auf dem Weg zur edelmetallkatalysierten Nitrat‐ und Nitrit‐Entfernung aus Trinkwasser , 1989 .

[81]  K. Peinemann,et al.  Nitrate removal of drinking water by means of catalytically active membranes , 1998 .

[82]  Naotsugu Itoh,et al.  An adiabatic type of palladium membrane reactor for coupling endothermic and exothermic reactions , 1997 .

[83]  Wei-Chun Xu,et al.  Basic experimental study on palladium membrane reactors , 1992 .

[84]  I. Turunen,et al.  Kinetics of nitrate reduction in monolith reactor , 1994 .

[85]  N. Sato,et al.  A Palladium/Porous-Glass Composite Membrane for Hydrogen Separation , 1988 .

[86]  Katsuki Kusakabe,et al.  Palladium membrane formed in macropores of support tube by chemical vapor deposition with crossflow through a porous wall , 1995 .