PEEL: A Framework for Benchmarking Distributed Systems and Algorithms
暂无分享,去创建一个
[1] Joseph M. Hellerstein,et al. GraphLab: A New Framework For Parallel Machine Learning , 2010, UAI.
[2] Seif Haridi,et al. Apache Flink™: Stream and Batch Processing in a Single Engine , 2015, IEEE Data Eng. Bull..
[3] Kunle Olukotun,et al. Map-Reduce for Machine Learning on Multicore , 2006, NIPS.
[4] Tilmann Rabl,et al. Benchmarking Data Flow Systems for Scalable Machine Learning , 2017, BeyondMR@SIGMOD.
[5] Sanjay Ghemawat,et al. MapReduce: Simplified Data Processing on Large Clusters , 2004, OSDI.
[6] Carlos Guestrin,et al. Distributed GraphLab : A Framework for Machine Learning and Data Mining in the Cloud , 2012 .
[7] Matthew Richardson,et al. Predicting clicks: estimating the click-through rate for new ads , 2007, WWW '07.
[8] Felix Naumann,et al. The Stratosphere platform for big data analytics , 2014, The VLDB Journal.
[9] Michael J. Franklin,et al. Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing , 2012, NSDI.
[10] Aart J. C. Bik,et al. Pregel: a system for large-scale graph processing , 2010, SIGMOD Conference.
[11] Martin Wattenberg,et al. Ad click prediction: a view from the trenches , 2013, KDD.
[12] Volker Markl,et al. Implicit Parallelism through Deep Language Embedding , 2016, SGMD.
[13] Joseph E. Gonzalez,et al. GraphLab: A New Parallel Framework for Machine Learning , 2010 .