Direct numerical simulations of round jets: Vortex induction and side jets

In this paper, a numerical investigation of three‐dimensional round jets subjected to streamwise and azimuthal perturbations is reported. The main objective of the study is to give a consistent scenario for the breaking of rotational symmetry in such flows which may ultimately lead to the production of intense side jets. In particular it is shown that the development of the Widnall instability on the primary vortex rings and the evolution of the Bernal and Roshko [J. Fluid Mech. 170, 499 (1986)] streamwise vortices generated by the instability of the braid could be deeply intertwined. A comprehensive discussion of the vortex induction mechanisms leading to the reorientation of the initial vorticity both in the ring and braid regions and to the deformation of the rings is presented. The recent analysis by Monkewitz and Pfizenmaier [Phys. Fluids A 3, 1356 (1991)] is confirmed in the sense that strong radial ejection of fluid is not directly linked to the deformation of the vortex rings but rather to the occurrence of coherent streamwise vortex pairs. However, the final relative position of the streamwise vortex pairs with respect to the deformations of the vortex rings differs slightly from Monkewitz and Pfizenmaier’s proposition.In this paper, a numerical investigation of three‐dimensional round jets subjected to streamwise and azimuthal perturbations is reported. The main objective of the study is to give a consistent scenario for the breaking of rotational symmetry in such flows which may ultimately lead to the production of intense side jets. In particular it is shown that the development of the Widnall instability on the primary vortex rings and the evolution of the Bernal and Roshko [J. Fluid Mech. 170, 499 (1986)] streamwise vortices generated by the instability of the braid could be deeply intertwined. A comprehensive discussion of the vortex induction mechanisms leading to the reorientation of the initial vorticity both in the ring and braid regions and to the deformation of the rings is presented. The recent analysis by Monkewitz and Pfizenmaier [Phys. Fluids A 3, 1356 (1991)] is confirmed in the sense that strong radial ejection of fluid is not directly linked to the deformation of the vortex rings but rather to the occ...

[1]  Donald B. Bliss,et al.  The instability of short waves on a vortex ring , 1974, Journal of Fluid Mechanics.

[2]  Sheila E. Widnall,et al.  The two- and three-dimensional instabilities of a spatially periodic shear layer , 1982, Journal of Fluid Mechanics.

[3]  A. Michalke Survey on jet instability theory , 1984 .

[4]  S. J. Lin,et al.  The mixing layer: deterministic models of a turbulent flow. Part 3. The effect of plane strain on the dynamics of streamwise vortices , 1984, Journal of Fluid Mechanics.

[5]  John C. Neu,et al.  The dynamics of stretched vortices , 1984, Journal of Fluid Mechanics.

[6]  Chih-Ming Ho,et al.  Perturbed Free Shear Layers , 1984 .

[7]  Luis P. Bernal,et al.  Streamwise vortex structure in plane mixing layers , 1986, Journal of Fluid Mechanics.

[8]  Numerical studies of motion and decay of vortex filaments , 1986 .

[9]  S. Orszag,et al.  Secondary instability of a temporally growing mixing layer , 1987, Journal of Fluid Mechanics.

[10]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[11]  Dietrich W. Bechert,et al.  The spreading of self‐excited hot jets by side jets , 1989 .

[12]  S. Raghu,et al.  Absolute instability in variable density round jets , 1989 .

[13]  Dietrich W. Bechert,et al.  Self-excited oscillations and mixing in a heated round jet , 1990, Journal of Fluid Mechanics.

[14]  Peter A. Monkewitz,et al.  Mixing by side jets’’ in strongly forced and self‐excited round jets , 1991 .

[15]  B. Lehmann,et al.  On the Mechanism of ‘Side-jet’ Generation in Periodically Excited Axisymmetric Jets , 1991 .

[16]  J. Lasheras,et al.  Three-Dimensional Structure of the Vorticity Field in the Near Region of Laminar, Co-Flowing Forced Jets , 1991 .

[17]  A. Vincent,et al.  The spatial structure and statistical properties of homogeneous turbulence , 1991, Journal of Fluid Mechanics.

[18]  Eckart Meiburg,et al.  Numerical investigation of three-dimensionally evolving jets subject to axisymmetric and azimuthal perturbations , 1991, Journal of Fluid Mechanics.

[19]  Arne V. Johansson,et al.  Advances in Turbulence 3 , 1991 .

[20]  J. Jiménez The Global Geometry of Turbulence , 1991 .

[21]  M. Gharib,et al.  The role of streamwise vorticity in the near-field entrainment of round jets , 1992, Journal of Fluid Mechanics.