Generalized modal satisfiability

It is well known that modal satisfiability is PSPACE-complete (Ladner (1977) [21]). However, the complexity may decrease if we restrict the set of propositional operators used. Note that there exist an infinite number of propositional operators, since a propositional operator is simply a Boolean function. We completely classify the complexity of modal satisfiability for every finite set of propositional operators, i.e., in contrast to previous work, we classify an infinite number of problems. We show that, depending on the set of propositional operators, modal satisfiability is PSPACE-complete, coNP-complete, or in P. We obtain this trichotomy not only for modal formulas, but also for their more succinct representation using modal circuits. We consider both the uni-modal and the multi-modal cases, and study the dual problem of validity as well.

[1]  Antony Galton,et al.  A unifying semantics for time and events , 2004, Artif. Intell..

[2]  Edith Hemaspaandra,et al.  On the Complexity of Elementary Modal Logics , 2008, STACS.

[3]  Harry R. Lewis,et al.  Satisfiability problems for propositional calculi , 1979, Mathematical systems theory.

[4]  Heribert Vollmer,et al.  Playing with Boolean Blocks , Part II : Constraint Satisfaction Problems 1 , 2004 .

[5]  Edith Hemaspaandra,et al.  The Price of Universality , 1996, Notre Dame J. Formal Log..

[6]  Saul A. Kripke,et al.  Semantical Analysis of Modal Logic I Normal Modal Propositional Calculi , 1963 .

[7]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[8]  A. Prasad Sistla,et al.  The complexity of propositional linear temporal logics , 1982, STOC '82.

[9]  Churn-Jung Liau,et al.  Belief, information acquisition, and trust in multi-agent systems--A modal logic formulation , 2003, Artif. Intell..

[10]  Heribert Vollmer,et al.  The tractability of model checking for LTL: The good, the bad, and the ugly fragments , 2008, TOCL.

[11]  Costas S. Iliopoulos,et al.  Proceedings of the 25th International Symposium on Theoretical Aspects of Computer Science , 2008 .

[12]  R. L. Goodstein,et al.  An Essay in Modal Logic , 1953, The Mathematical Gazette.

[13]  Andris Ambainis,et al.  Quantum search algorithms , 2004, SIGA.

[14]  G. P. Henderson,et al.  An Essay in Modal Logic. , 1953 .

[15]  Steffen Reith Generalized satisfiability problems , 2001 .

[16]  Lane A. Hemaspaandra SIGACT news complexity theory column 42 , 2003, SIGA.

[17]  D. Lau,et al.  Function Algebras on Finite Sets: Basic Course on Many-Valued Logic and Clone Theory (Springer Monographs in Mathematics) , 2006 .

[18]  Heribert Vollmer,et al.  Introduction to Circuit Complexity: A Uniform Approach , 2010 .

[19]  Nicholas Pippenger,et al.  Theories of computability , 1997 .

[20]  Saul A. Kripke,et al.  Semantical Considerations on Modal Logic , 2012 .

[21]  Richard Spencer-Smith,et al.  Modal Logic , 2007 .

[22]  Gustav Nordh,et al.  A Trichotomy in the Complexity of Propositional Circumscription , 2005, LPAR.

[23]  Dirk Pattinson,et al.  PSPACE Bounds for Rank-1 Modal Logics , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).

[24]  Omer Reingold,et al.  Undirected ST-connectivity in log-space , 2005, STOC '05.

[25]  Emil L. Post The two-valued iterative systems of mathematical logic , 1942 .

[26]  C. Lewis,et al.  A Survey Of Symbolic Logic , 1920 .

[27]  Heribert Vollmer,et al.  Quantified Constraints: The Complexity of Decision and Counting for Bounded Alternation , 2005, Electron. Colloquium Comput. Complex..

[28]  Edith Hemaspaandra,et al.  Generalized Modal Satisfiability , 2006, STACS.

[29]  Joseph Y. Halpern Proceedings of the 1986 Conference on Theoretical aspects of reasoning about knowledge , 1986 .

[30]  Klaus W. Wagner,et al.  The Complexity of Problems Defined by Subclasses of Boolean Functions , 1999 .

[31]  Lane A. Hemaspaandra SIGACT news complexity theory column 43 , 2004, SIGA.

[32]  Joseph Y. Halpern,et al.  A knowledge-based analysis of zero knowledge , 1988, STOC '88.

[33]  D. Lau,et al.  Function algebras on finite sets : a basic course on many-valued logic and clone theory , 2006 .

[34]  J. McCarthy,et al.  On the model theory of knowledge , 1978 .

[35]  Edith Hemaspaandra The Complexity of Poor Man's Logic , 2001, J. Log. Comput..

[36]  Heribert Vollmer,et al.  Optimal satisfiability for propositional calculi and constraint satisfaction problems , 2003, Inf. Comput..

[37]  Werner Nutt,et al.  The Complexity of Concept Languages , 1997, KR.

[38]  Richard E. Ladner,et al.  The Computational Complexity of Provability in Systems of Modal Propositional Logic , 1977, SIAM J. Comput..

[39]  Marc Gyssens,et al.  Closure properties of constraints , 1997, JACM.

[40]  Robert Goldblatt Mathematical modal logic: A view of its evolution , 2003, J. Appl. Log..

[41]  Krister Segerberg,et al.  An introduction to modal logic : the Lemmon notes , 1977 .

[42]  Francesco M. Donini,et al.  Exptime Tableaux for ALC , 2000, Description Logics.

[43]  R. Ladner,et al.  The Logic of Distributed Protocols (Preliminary Report). , 1988 .

[44]  Joseph Y. Halpern The Effect of Bounding the Number of Primitive Propositions and the Depth of Nesting on the Complexity of Modal Logic , 1995, Artif. Intell..

[45]  Gert Smolka,et al.  Attributive Concept Descriptions with Complements , 1991, Artif. Intell..

[46]  Werner Nutt,et al.  The Complexity of Existential Quantification in Concept Languages , 1992, Artif. Intell..

[47]  Robert C. Moore Reasoning About Knowledge and Action , 1977, IJCAI.

[48]  Hans Hüttel,et al.  Modal Logics for Cryptographic Processes , 2002, EXPRESS.

[49]  Yan Zhang,et al.  Knowledge updates: Semantics and complexity issues , 2005, Artif. Intell..

[50]  Heribert Vollmer,et al.  The Complexity of Generalized Satisfiability for Linear Temporal Logic , 2006, Electron. Colloquium Comput. Complex..

[51]  Krister Segerberg,et al.  An essay in classical modal logic , 1971 .

[52]  Henning Schnoor September The Complexity of the Boolean Formula Value Problem , 2005 .

[53]  Neil Immerman,et al.  Foundations of Knowledge for Distributed Systems , 1986, TARK.

[54]  Ian Stark,et al.  Free-Algebra Models for the pi-Calculus , 2005, FoSSaCS.

[55]  Heribert Vollmer,et al.  An Algebraic Approach to the Complexity of Generalized Conjunctive Queries , 2004, SAT.

[56]  Reiner Dojen,et al.  On the automated implementation of modal logics used to verify security protocols , 2003, ISICT.

[57]  Joseph Y. Halpern,et al.  A Guide to Completeness and Complexity for Modal Logics of Knowledge and Belief , 1992, Artif. Intell..

[58]  H. Gaifman,et al.  Symbolic Logic , 1881, Nature.