Incorporating Asymmetric Distributional Information in Robust Value-at-Risk Optimization

Value-at-Risk (VaR) is one of the most widely accepted risk measures in the financial and insurance industries, yet efficient optimization of VaR remains a very difficult problem. We propose a computationally tractable approximation method for minimizing the VaR of a portfolio based on robust optimization techniques. The method results in the optimization of a modified VaR measure, Asymmetry-Robust VaR (ARVaR), that takes into consideration asymmetries in the distributions of returns and is coherent, which makes it desirable from a financial theory perspective. We show that ARVaR approximates the Conditional VaR of the portfolio as well. Numerical experiments with simulated and real market data indicate that the proposed approach results in lower realized portfolio VaR, better efficient frontier, and lower maximum realized portfolio loss than alternative approaches for quantile-based portfolio risk minimization.

[1]  Extreme Returns, Tail Estimation, and Value-at-Risk , 1997 .

[2]  Laurent El Ghaoui,et al.  Worst-Case Value-At-Risk and Robust Portfolio Optimization: A Conic Programming Approach , 2003, Oper. Res..

[3]  Helmut Mausser,et al.  ALGORITHMS FOR OPTIMIZATION OF VALUE­ AT-RISK* , 2002 .

[4]  W. Ziemba,et al.  Worldwide asset and liability modeling , 1998 .

[5]  H. Konno,et al.  Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market , 1991 .

[6]  Philipp J. Schönbucher,et al.  Advances in Finance and Stochastics , 2002 .

[7]  Panos M. Pardalos,et al.  Financial Engineering, E-commerce and Supply Chain , 2010 .

[8]  Melvyn Sim,et al.  Goal-Driven Optimization , 2009, Oper. Res..

[9]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[10]  G. Duffee The long-run behavior of firms' stock returns: Evidence and interpretations , 2002 .

[11]  Kevin Dowd,et al.  Beyond Value at Risk: The New Science of Risk Management , 1998 .

[12]  Melvyn Sim,et al.  The Price of Robustness , 2004, Oper. Res..

[13]  T. Andersen THE ECONOMETRICS OF FINANCIAL MARKETS , 1998, Econometric Theory.

[14]  Alexander Schied,et al.  Robust Preferences and Convex Measures of Risk , 2002 .

[15]  Arkadi Nemirovski,et al.  Robust Convex Optimization , 1998, Math. Oper. Res..

[16]  Peng Sun,et al.  A Robust Optimization Perspective on Stochastic Programming , 2007, Oper. Res..

[17]  Laurent El Ghaoui,et al.  Robust Solutions to Uncertain Semidefinite Programs , 1998, SIAM J. Optim..

[18]  Dennis E. Logue,et al.  Foundations of Finance. , 1977 .

[19]  H. Levy Stochastic dominance and expected utility: survey and analysis , 1992 .

[20]  Melvyn Sim,et al.  Robust linear optimization under general norms , 2004, Oper. Res. Lett..

[21]  Toshinao Yoshiba,et al.  On the Validity of Value-at-Risk: Comparative Analyses with Expected Shortfall , 2002 .

[22]  D. Duffie,et al.  An Overview of Value at Risk , 1997 .

[23]  Philipp J. Sch Onbucher Factor models for portfolio credit risk , 2000 .

[24]  A. Lo,et al.  THE ECONOMETRICS OF FINANCIAL MARKETS , 1996, Macroeconomic Dynamics.

[25]  Melvyn Sim,et al.  A Robust Optimization Perspective on , 2007 .

[26]  Arkadi Nemirovski,et al.  Robust solutions of uncertain linear programs , 1999, Oper. Res. Lett..

[27]  A Ben Tal,et al.  ROBUST SOLUTIONS TO UNCERTAIN PROGRAMS , 1999 .

[28]  Arkadi Nemirovski,et al.  Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.

[29]  Phhilippe Jorion Value at Risk: The New Benchmark for Managing Financial Risk , 2000 .

[30]  R. Rockafellar,et al.  Conditional Value-at-Risk for General Loss Distributions , 2001 .

[31]  W. Andrew,et al.  LO, and A. , 1988 .