Peridotite xenoliths from the Shiribeshi Seamount, Japan Sea: insights into mantle processes in a back-arc basin

[1]  E. Geissler,et al.  Laser Ablation Inductively Coupled Plasma Mass Spectrometry , 2015, Transplantation direct.

[2]  Yan Liang,et al.  Temperatures and cooling rates recorded in REE in coexisting pyroxenes in ophiolitic and abyssal peridotites , 2015 .

[3]  S. Kodaira,et al.  Geochemical variations in Japan Sea back‐arc basin basalts formed by high‐temperature adiabatic melting of mantle metasomatized by sediment subduction components , 2015 .

[4]  J. Snow,et al.  Melt stagnation in peridotites from the Godzilla Megamullion Oceanic Core Complex, Parece Vela Basin, Philippine Sea , 2013 .

[5]  D. Ionov,et al.  Melt– and Fluid–Rock Interaction in Supra-Subduction Lithospheric Mantle: Evidence from Andesite-hosted Veined Peridotite Xenoliths , 2013 .

[6]  T. Morishita,et al.  Petrology of peridotite xenolith-bearing basaltic to andesitic lavas from the Shiribeshi Seamount, off northwestern Hokkaido, the Sea of Japan , 2013 .

[7]  D. Ionov,et al.  Along-arc variations in lithospheric mantle compositions in Kamchatka, Russia: First trace element data on mantle xenoliths from the Klyuchevskoy Group volcanoes , 2013 .

[8]  H. Dick,et al.  Melt–Rock Reaction in the Mantle: Mantle Troctolites from the Parece Vela Ancient Back-Arc Spreading Center , 2013 .

[9]  R. Stern,et al.  Origin of Back‐Arc Basin Magmas: Trace Element and Isotope Perspectives , 2013 .

[10]  D. Ionov,et al.  A new petrogenetic model for low‐Ca boninites: Evidence from veined sub‐arc xenoliths on melt‐mantle interaction and melt fractionation , 2012 .

[11]  Chenguang Sun,et al.  A REE-in-two-pyroxene thermometer for mafic and ultramafic rocks , 2012 .

[12]  祐司 市山,et al.  深海底岩石試料データベース「GANSEKI」の紹介 , 2011 .

[13]  C. Mével,et al.  Multiscale chemical heterogeneities beneath the eastern Southwest Indian Ridge (52°E–68°E): Trace element compositions of along‐axis dredged peridotites , 2011 .

[14]  Kentaro Nakamura,et al.  Igneous, Alteration and Exhumation Processes Recorded in Abyssal Peridotites and Related Fault Rocks from an Oceanic Core Complex along the Central Indian Ridge , 2009 .

[15]  S. Nohda Formation of the Japan Sea basin: Reassessment from Ar–Ar ages and Nd–Sr isotopic data of basement basalts of the Japan Sea and adjacent regions , 2009 .

[16]  G. Suhr,et al.  Stacked gabbro units and intervening mantle: A detailed look at a section of IODP Leg 305, Hole U1309D , 2008 .

[17]  A. Tamura,et al.  Petrology and geochemistry of peridotites from IODP Site U1309 at Atlantis Massif, MAR 30°N: micro- and macro-scale melt penetrations into peridotites , 2008 .

[18]  D. Dingwell,et al.  Experimental peridotite–melt reaction at one atmosphere: a textural and chemical study , 2007 .

[19]  S. Arai,et al.  Insights into Petrological Characteristics of the Lithosphere of Mantle Wedge beneath Arcs through Peridotite Xenoliths: a Review , 2007 .

[20]  I. Savov,et al.  Shallow slab fluid release across and along the Mariana arc-basin system: Insights from geochemistry of serpentinized peridotites from the Mariana fore arc , 2007 .

[21]  Cin-Ty A. Lee,et al.  Quantifying trace element disequilibria in mantle xenoliths and abyssal peridotites , 2007 .

[22]  小満 二ノ宮,et al.  日本海竹島海山 (仮称) のかんらん岩捕獲岩の成因とその意義 , 2007 .

[23]  V. Okrugin,et al.  Melting and multi-stage metasomatism in the mantle wedge beneath a frontal arc inferred from highly depleted peridotite xenoliths from the Avacha volcano, southern Kamchatka , 2006 .

[24]  Katherine A. Kelley,et al.  Mantle melting as a function of water content beneath back-arc basins , 2006 .

[25]  Y. Ohara Mantle process beneath Philippine Sea back‐arc spreading ridges: A synthesis of peridotite petrology and tectonics , 2006 .

[26]  P. Hoppe,et al.  Trace element distribution between orthopyroxene and clinopyroxene in peridotites from the Gakkel Ridge: a SIMS and NanoSIMS study , 2005 .

[27]  H. O’Neill,et al.  The effect of temperature on the equilibrium distribution of trace elements between clinopyroxene, orthopyroxene, olivine and spinel in upper mantle peridotite , 2005 .

[28]  J. Viramonte,et al.  The late Cretaceous lithospheric mantle beneath the Central Andes: Evidence from phase equilibria and composition of mantle xenoliths , 2005 .

[29]  T. Morishita,et al.  Determination of Multiple Trace Element Compositions in Thin (> 30 μm) Layers of NIST SRM 614 and 616 Using Laser Ablation‐Inductively Coupled Plasma‐Mass Spectrometry (LA‐ICP‐MS) , 2005 .

[30]  S. Hart,et al.  Major and trace element composition of the depleted MORB mantle (DMM) , 2005 .

[31]  Yigang Xu,et al.  Contrasting Enrichments in High- and Low-Temperature Mantle Xenoliths from Nushan, Eastern China: Results of a Single Metasomatic Event during Lithospheric Accretion? , 2004 .

[32]  B. Wood,et al.  Trace element partitioning between mantle wedge peridotite and hydrous MgO-rich melt , 2003 .

[33]  S. Eggins,et al.  Peridotite xenoliths from Grenada, Lesser Antilles Island Arc , 2003 .

[34]  T. Ishii,et al.  Peridotites and gabbros from the Parece Vela backarc basin: Unique tectonic window in an extinct backarc spreading ridge , 2003 .

[35]  B. Taylor,et al.  Back-arc basin basalt systematics , 2003 .

[36]  A. Kent,et al.  Mineral/melt partitioning of trace elements during hydrous peridotite partial melting , 2003 .

[37]  P. Hoppe,et al.  Garnet-field melting and late-stage refertilization in "Residual" abyssal peridotites from the Central Indian Ridge , 2002 .

[38]  J. Bodinier,et al.  Mechanisms and Sources of Mantle Metasomatism: Major and Trace Element Compositions of Peridotite Xenoliths from Spitsbergen in the Context of Numerical Modelling , 2002 .

[39]  T. Ishii,et al.  Peridotites from the Mariana Trough: first look at the mantle beneath an active back-arc basin , 2002 .

[40]  P. Ulmer Partial melting in the mantle wedge — the role of H2O in the genesis of mantle-derived ‘arc-related’ magmas , 2001 .

[41]  B. McInnes,et al.  Hydrous metasomatism of oceanic sub-arc mantle, Lihir, Papua New Guinea: Part 2. Trace element characteristics of slab-derived fluids , 2001 .

[42]  B. McInnes,et al.  Hydrous metasomatism of oceanic sub-arc mantle, Lihir, Papua New Guinea , 2001 .

[43]  A. Hofmann,et al.  Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites , 2001, Nature.

[44]  S. Arai,et al.  Origin of fine‐grained peridotite xenoliths from Iraya volcano of Batan Island, Philippines: deserpentinization or metasomatism at the wedge mantle beneath an incipient arc? , 2000 .

[45]  J. Blundy,et al.  SIMS determination of trace element partition coefficients between garnet, clinopyroxene and hydrous basaltic liquids at 2–7.5 GPa and 1080–1200°C , 2000 .

[46]  R. Arculus,et al.  The redox state of subduction zones: insights from arc-peridotites , 1999 .

[47]  S. Hart,et al.  Silica enrichment in the continental upper mantle via melt/rock reaction , 1998 .

[48]  J. Pearce,et al.  Peridotites from the Izu-Bonin-Mariana Forearc (ODP Leg 125): Evidence for Mantle Melting and Melt-Mantle Interaction in a Supra-Subduction Zone Setting , 1998 .

[49]  J. Bodinier,et al.  A plate model for the simulation of trace element fractionation during partial melting and magma transport in the Earth's upper mantle , 1997 .

[50]  S. Jackson,et al.  A Compilation of New and Published Major and Trace Element Data for NIST SRM 610 and NIST SRM 612 Glass Reference Materials , 1997 .

[51]  R. Hékinian,et al.  Spreading-rate dependence of the extent of mantle melting beneath ocean ridges , 1997, Nature.

[52]  N. Abe,et al.  Reaction of orthopyroxene in peridotite xenoliths with alkali-basalt melt and its implication for genesis of alpine-type chromitite , 1995 .

[53]  K. Hirose,et al.  Hydrous partial melting of lherzolite at 1 GPa: The effect of H2O on the genesis of basaltic magmas , 1995 .

[54]  W. McDonough,et al.  The composition of the Earth , 1995 .

[55]  L. Jolivet,et al.  Japan Sea, opening history and mechanism: A synthesis , 1994 .

[56]  T. Wagner,et al.  Experimental and natural partitioning of Th, U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts , 1994 .

[57]  B. Cousens,et al.  Subduction-modified pelagic sediments as the enriched component in back-arc basalts from the Japan Sea: Ocean Drilling Program Sites 797 and 794 , 1994 .

[58]  S. Arai Characterization of spinel peridotites by olivine-spinel compositional relationships: Review and interpretation , 1994 .

[59]  S. Arai Compositional variation of olivine-chromian spinel in Mg-rich magmas as a guide to their residual spinel peridotites , 1994 .

[60]  S. Newman,et al.  The role of water in the petrogenesis of Mariana trough magmas , 1994 .

[61]  M. Thirlwall,et al.  Trace element geochemistry of peridotites from the Izu-Bonin-Mariana Forearc, Leg 125 , 1992 .

[62]  M. P. Gorton,et al.  Geochemistry of Igneous Rocks from Legs 127 and 128, Sea of Japan , 1992 .

[63]  D. Elthon Chemical trends in abyssal peridotites : Refertilization of depleted suboceanic mantle , 1992 .

[64]  H. Dick,et al.  Open system melting and temporal and spatial variation of peridotite and basalt at the Atlantis II Fracture Zone , 1992 .

[65]  N. Takaoka,et al.  Argon analyses of volcanic rocks from the Japan Sea floor , 1992 .

[66]  D. McKenzie,et al.  Partial melt distributions from inversion of rare earth element concentrations , 1991 .

[67]  S. Tamura,et al.  Geochemistry of newly discovered quaternary Shiribeshi Volcano, Northeast Japan Sea , 1991 .

[68]  D. Bideau,et al.  Plastic deformation and magmatic impregnation in serpentinized ultramafic rocks from the Garrett transform fault (East Pacific Rise) , 1990 .

[69]  T. Köhler,et al.  Geothermobarometry in Four-phase Lherzolites II. New Thermobarometers, and Practical Assessment of Existing Thermobarometers , 1990 .

[70]  G. Vasseur,et al.  Mechanisms of Mantle Metasomatism: Geochemical Evidence from the Lherz Orogenic Peridotite , 1990 .

[71]  H. Dick,et al.  Melting in the oceanic upper mantle: An ion microprobe study of diopsides in abyssal peridotites , 1990 .

[72]  P. Kelemen Reaction Between Ultramafic Rock and Fractionating Basaltic Magma I. Phase Relations, the Origin of Calc-alkaline Magma Series, and the Formation of Discordant Dunite , 1990 .

[73]  C. Dupuy,et al.  Mantle metasomatism above subduction zones: Trace-element and radiogenic isotope characteristics of peridotite xenoliths from Batan Island (Philippines) , 1989 .

[74]  K. Shuto,et al.  A newly discovered Quaternary volcano from northeast Japan Sea: K-Ar age of andesite dredged from the Shiribeshi Seamount , 1989 .

[75]  D. L. Anderson Composition of the Earth , 1989, Science.

[76]  T. Matsuda,et al.  Opening mode of the Japan Sea inferred from the palaeomagnetism of the Japan Arc , 1985, Nature.

[77]  H. Dick,et al.  Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas , 1984 .

[78]  C. Herzberg Pyroxene geothermometry and geobarometry: experimental and thermodynamic evaluation of some subsolidus phase relations involving pyroxenes in the system CaO-MgO-Al2O3-SiO2 , 1978 .

[79]  I. Kushiro Effect of Water on the Composition of Magmas Formed at High Pressures , 1972 .

[80]  D. Shaw Trace element fractionation during anatexis , 1970 .

[81]  B. Mason Composition of the Earth , 1966, Nature.

[82]  H. Dick,et al.  Mantle Melting, Melt Transport, and Delivery Beneath a Slow-Spreading Ridge: The Paleo-MAR from 23°15′N to 23°45′N , 2010 .

[83]  D. Ionov Petrology of Mantle Wedge Lithosphere: New Data on Supra-Subduction Zone Peridotite Xenoliths from the Andesitic Avacha Volcano, Kamchatka , 2010 .

[84]  T. Morishita,et al.  Simultaneous determination of multiple trace element compositions in thin (<30.MU.m) layers of BCR-2G by 193 nm ArF excimer laser ablation-ICP-MS: implications for matrix effect and elemental fractionation on quantitative analysis , 2005 .

[85]  T. Morishita,et al.  Simultaneous in-situ multi-element analysis of minerals on thin section using LA-ICP-MS , 2004 .

[86]  S. Newman,et al.  Chemical and Isotopic Composition of Lavas from the Northern Mariana Trough: Implications for Magmagenesis in Back-arc Basins , 1998 .

[87]  Ju-Chin Chen,et al.  Geochemistry of Miocene basaltic rocks recovered by the Ocean Drilling Program from the Japan Sea , 1996 .

[88]  R. Berry,et al.  High-pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle , 1994 .

[89]  T. Fujii,et al.  57. ND AND SR ISOTOPIC STUDY OF LEG 127 BASALTS: IMPLICATIONS FOR THE EVOLUTION OF THE JAPAN SEA BACKARC BASIN1 , 1992 .

[90]  J. Allan 51. CR-SPINEL AS A PETROGENETIC INDICATOR: DEDUCING MAGMA COMPOSITION FROM SPINELS IN HIGHLY ALTERED BASALTS FROM THE JAPAN SEA, SITES 794 AND 7971 , 1992 .

[91]  K. Tamaki Tectonic synthesis and implications of Japan Sea ODP drilling , 1992 .

[92]  N. Takaoka,et al.  50. 40 AR- 39 AR ANALYSIS OF VOLCANIC ROCKS RECOVERED FROM THE JAPAN SEA FLOOR: CONSTRAINTS ON THE AGE OF FORMATION OF THE JAPAN SEA1 , 1992 .

[93]  R. Berry,et al.  High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle , 1991 .

[94]  B. Wood Oxygen barometry of spinel peridotites , 1991 .

[95]  A. Takeuchi Geomorphology, geology and tectonics of the Shiribeshi Seamount, northern Sea of Japan , 1990 .

[96]  W. McDonough,et al.  Rare earth elements in upper mantle rocks , 1989 .

[97]  H. Dick Abyssal peridotites, very slow spreading ridges and ocean ridge magmatism , 1989, Geological Society, London, Special Publications.

[98]  P. Wells Pyroxene thermometry in simple and complex systems , 1977 .