Plasmonic absorption enhancement in organic solar cells with thin active layers

The influence of silver nanoparticles on light absorption in organic solar cells based on poly(3-exylthiophene):(6,6)-phenyl-C61-butyric-acid-methyl ester is studied by means of finite element method simulations. The metallic nanoparticles are embedded directly inside the active layer. We investigate the enhancement mechanism and the influence of factors such as the spacing between neighboring nanoparticles, the particle diameter, and the coating thickness. The plasmonic resonance of the particles has a wideband influence on the absorption, and we observe a rich interaction between plasmonic enhancement and the absorption characteristics of the active layer material. An enhancement with a factor of around 1.56 is observed for nanoparticles with a diameter of 24 nm and a spacing of 40 nm, bringing the structure to the absorption level of much thicker active layers without nanoparticles. In addition, a significant effect of the particle coating thickness is observed.

[1]  Viktor Andersson,et al.  Optical modeling of a folded organic solar cell , 2008 .

[2]  Carsten Rockstuhl,et al.  Absorption enhancement in solar cells by localized plasmon polaritons , 2008 .

[3]  Francois Flory,et al.  Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend , 2007 .

[4]  Daniel Derkacs,et al.  Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles , 2006 .

[5]  Stephen R. Forrest,et al.  Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters , 2004 .

[6]  Carsten Rockstuhl,et al.  Photon management by metallic nanodiscs in thin film solar cells , 2009 .

[7]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[8]  N. E. Coates,et al.  Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing , 2007, Science.

[9]  Andreas Gombert,et al.  ITO-free wrap through organic solar cells—A module concept for cost-efficient reel-to-reel production , 2007 .

[10]  Andreas Schüler,et al.  Nanostructured materials for solar energy conversion , 2005 .

[11]  Lukas Novotny,et al.  Principles of Nano-Optics by Lukas Novotny , 2006 .

[12]  Albert Polman,et al.  Design principles for particle plasmon enhanced solar cells , 2008 .

[13]  Dieter Meissner,et al.  Metal cluster enhanced organic solar cells , 2000 .

[14]  Stephen R. Forrest,et al.  The Limits to Organic Photovoltaic Cell Efficiency , 2005 .

[15]  Nelson E. Coates,et al.  Bulk heterojunction solar cells with internal quantum efficiency approaching 100 , 2009 .

[16]  Niyazi Serdar Sariciftci,et al.  Organic solar cells: An overview , 2004 .

[17]  Wai-Yeung Wong,et al.  Metallated conjugated polymers as a new avenue towards high-efficiency polymer solar cells. , 2007, Nature materials.

[18]  Ludovic Escoubas,et al.  Improving light absorption in organic solar cells by plasmonic contribution , 2009 .

[19]  A J Heeger,et al.  Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. , 2007, Nature materials.

[20]  Y. Akimov,et al.  Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes. , 2009, Optics express.

[21]  J M Saiz,et al.  Interaction of nanoparticles with substrates: effects on the dipolar behaviour of the particles. , 2008, Optics express.

[22]  M. Green,et al.  Surface plasmon enhanced silicon solar cells , 2007 .

[23]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[24]  L. Rothberg,et al.  Plasmon enhancement of bulk heterojunction organic photovoltaic devices by electrode modification , 2008 .

[25]  Daniel Derkacs,et al.  Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles , 2007 .

[26]  Yoon-Chae Nah,et al.  Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles , 2008 .

[27]  Thomas H. Reilly,et al.  Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics , 2008 .

[28]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[29]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.