How much H and He is ‘hidden’ in SNe Ib/c? – I. Low-mass objects

H and He features in photospheric spectra have seldom been used to infer quantitatively the properties of Type IIb, Ib and Ic supernovae (SNe IIb, Ib and Ic) and their progenitor stars. Most radiative transfermodels ignored non-local thermodynamic equilibrium (NLTE) effects, which are extremely strong especially in the He-dominated zones. In this paper, a comprehensive set of model atmospheres for low-mass SNe IIb/Ib/Ic is presented. Long-standing questions, such as how much He can be contained in SNe Ic, where He lines are not seen, can thus be addressed. The state of H and He is computed in full NLTE, including the effect of heating by fast electrons. The models are constructed to represent iso-energetic explosions of the same stellar core with differently massive H/He envelopes on top. The synthetic spectra suggest that 0.06-0.14 M-circle dot of He and even smaller amounts of H suffice for optical lines to be present, unless ejecta asymmetries play a major role. This strongly supports the conjecture that low-mass SNe Ic originate from binaries where progenitor mass loss can be extremely efficient.

[1]  P. Deuflhard Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms , 2011 .

[2]  David Polishook,et al.  SN 2011dh: DISCOVERY OF A TYPE IIb SUPERNOVA FROM A COMPACT PROGENITOR IN THE NEARBY GALAXY M51 , 2011, 1106.3551.

[3]  Physics,et al.  SN 2009jf: a slow-evolving stripped-envelope core-collapse supernova , 2011, 1106.3030.

[4]  N. Langer,et al.  Runaway stars as progenitors of supernovae and gamma-ray bursts , 2011, 1103.1877.

[5]  S. Valenti,et al.  The He-rich stripped-envelope core-collapse supernova 2008ax , 2011, 1101.1824.

[6]  Hydrogen and helium in the late phase of SNe IIb , 2010, 1007.1881.

[7]  E. Baron,et al.  SEARCHING FOR HYDROGEN IN TYPE Ib SUPERNOVAE , 2010, 1006.1359.

[8]  S. Woosley,et al.  TYPE Ib/c SUPERNOVAE IN BINARY SYSTEMS. I. EVOLUTION AND PROPERTIES OF THE PROGENITOR STARS , 2010, 1004.0843.

[9]  R. Foley,et al.  THE TRANSITIONAL STRIPPED-ENVELOPE SN 2008ax: SPECTRAL EVOLUTION AND EVIDENCE FOR LARGE ASPHERICITY , 2010, 1001.2775.

[10]  P. Brown,et al.  MULTI-WAVELENGTH PROPERTIES OF THE TYPE IIb SN 2008ax , 2009, 0909.0967.

[11]  Stephen J. Smartt,et al.  Progenitors of Core-Collapse Supernovae , 2009, 0908.0700.

[12]  Rolf Walder,et al.  The different progenitors of type Ib, Ic SNe, and of GRB , 2009, 0906.2284.

[13]  Peter R. Young,et al.  CHIANTI - an atomic database for emission lines. IX. Ionization rates, recombination rates, ionization equilibria for the elements hydrogen through zinc and updated atomic data , 2009 .

[14]  L. A. Antonelli,et al.  The Metamorphosis of Supernova SN 2008D/XRF 080109: A Link Between Supernovae and GRBs/Hypernovae , 2008, Science.

[15]  Yuri Ralchenko,et al.  Electron-impact excitation and ionization cross sections for ground state and excited helium atoms , 2008 .

[16]  E. Ofek,et al.  The Type IIb SN 2008ax: spectral and light curve evolution , 2008, 0805.1914.

[17]  D. Morton,et al.  A Multiplet Table for Neutral Helium (4He I) with Transition Rates , 2007 .

[18]  G. Martínez-Pinedo,et al.  Theory of core-collapse supernovae , 2006, astro-ph/0612072.

[19]  Tokyo,et al.  The properties of the 'standard' type Ic supernova 1994I from spectral models , 2006, astro-ph/0604293.

[20]  D. Branch,et al.  Hydrogen in Type Ic Supernovae? , 2006, astro-ph/0604047.

[21]  D. Fox,et al.  A non-spherical core in the explosion of supernova SN 2004dj , 2006, Nature.

[22]  M. Turatto,et al.  1604-2004: Supernovae as Cosmological Lighthouses , 2005 .

[23]  Anthony Mezzacappa,et al.  ASCERTAINING THE CORE COLLAPSE SUPERNOVA MECHANISM: The State of the Art and the Road Ahead , 2005 .

[24]  T. Piran The physics of gamma-ray bursts , 2004, astro-ph/0405503.

[25]  Garching,et al.  Abundance stratification in Type Ia supernovae - I. The case of SN 2002bo , 2004, astro-ph/0409342.

[26]  J. Cuby,et al.  Optical and Infrared Spectroscopy of SN 1999ee and SN 1999ex , 2002, astro-ph/0203491.

[27]  N. M. Cann,et al.  Quadrupole oscillator strengths for the helium isoelectronic sequence: n 1S-m 1D, n 3S-m 3D, n 1P-m 1P, and n 3P-m 3P transitions with n <7 and m <7 , 2002 .

[28]  L. Lucy Monte Carlo transition probabilities , 2001 .

[29]  G. Lach,et al.  Forbidden transitions in the helium atom , 2001, physics/0105110.

[30]  P. Mazzali,et al.  Can Differences in the Nickel Abundance in Chandrasekhar-Mass Models Explain the Relation between the Brightness and Decline Rate of Normal Type Ia Supernovae? , 2000, astro-ph/0009490.

[31]  J. Cassinelli,et al.  Introduction to Stellar Winds by Henny J. G. L. M. Lamers , 1999 .

[32]  J. Cassinelli,et al.  Introduction to Stellar Winds , 1999 .

[33]  A. MacFadyen,et al.  Collapsars: Gamma-Ray Bursts and Explosions in “Failed Supernovae” , 1998, astro-ph/9810274.

[34]  C. McKee,et al.  The Expulsion of Stellar Envelopes in Core-Collapse Supernovae , 1998, astro-ph/9807046.

[35]  D. G. Hummer,et al.  Recombination of helium-like ions – I. Photoionization cross-sections and total recombination and cooling coefficients for atomic helium , 1998 .

[36]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[37]  L. Lucy,et al.  The 1.05‐μm feature in the spectrum of the Type Ia supernova 1994D: He in SNe Ia? , 1998 .

[38]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[39]  H. Mason,et al.  CHIANTI - an atomic database for emission lines - I. Wavelengths greater than 50 Å , 1997 .

[40]  Alejandro Clocchiatti,et al.  SN 1994I: Disentangling He i Lines in Type IC Supernovae , 1996 .

[41]  Chien Y. Peng,et al.  UBVRI Photometry of the Type IC SN 1994I in M51 , 1996 .

[42]  Thomas Matheson,et al.  The Type Ic Supernova 1994I in M51: Detection of Helium and Spectral Evolution , 1995 .

[43]  Shiomi Kumagai,et al.  Theoretical light curves for the type IC supernova SN 1994I , 1994 .

[44]  K. Nomoto,et al.  A carbon–oxygen star as progenitor of the type Ic supernova 1994I , 1994, Nature.

[45]  D. Swartz Charge transfer in helium-rich supernova plasma , 1994 .

[46]  K. Nomoto,et al.  Theoretical light curves of the type IIB supernova 1993J , 1993 .

[47]  S. Woosley Gamma-ray bursts from stellar mass accretion disks around black holes , 1993 .

[48]  R. Janev,et al.  Atomic and plasma-material interaction processes in controlled thermonuclear fusion , 1993 .

[49]  C. Fransson,et al.  Gamma-Ray Deposition and Nonthermal Excitation in Supernovae , 1992 .

[50]  Ulrich Nowak,et al.  A Family of Newton Codes for Systems of Highly Nonlinear Equations. , 1992 .

[51]  L. Lucy Nonthermal excitation of helium in type Ib supernovae , 1991 .

[52]  R. McCray,et al.  Energy degradation of fast electrons in hydrogen gas , 1991 .

[53]  K. Nomoto,et al.  Low-mass helium star models for Type Ib supernovae : light curves, mixing, and nucleosynthesis , 1990 .

[54]  J. Graham Radioactive ionization of the envelope of SN 1987A , 1988 .

[55]  M. Seaton,et al.  Atomic data for opacity calculations. VII. Energy levels, f values and photoionisation cross sections for He-like ions , 1987 .

[56]  R. Kirshner,et al.  The early spectral phase of type Ib supernovae - Evidence for helium , 1987 .

[57]  G. Rybicki,et al.  The Sobolev approximation for line formation with continuous opacity , 1985 .

[58]  L. Lucy,et al.  Multiline Transfer and the Dynamics of Stellar Winds , 1985 .

[59]  B. Pagel,et al.  Stellar atmospheres , 1978, Nature.

[60]  S. Bashkin,et al.  Atomic energy levels and Grotrian diagrams , 1975 .

[61]  W. Arnett Advanced evolution of massive stars. V. Neon burning , 1974 .

[62]  R. Gould Energy loss of fast electrons and positrons in a plasma , 1972 .

[63]  W.K. (Bill) Peterson,et al.  Tables of secondary-electron-production cross sections , 1972 .

[64]  H. Habing,et al.  Heating of the Interstellar Medium by X-Rays and by Cosmic Rays , 1971 .

[65]  D. Mihalas,et al.  Statistical Equilibrium Model Atmospheres for Early-Type Stars. III. Hydrogen and Helium Continua , 1968 .

[66]  W. Lotz Electron Impact Ionization Cross Sections and Ionization Rate Coefficients for Atoms and Ions , 1967 .