Simpler and greener preparation of an in-situ polymerized polyimide anode for lithium ion batteries

[1]  A. Kwade,et al.  Understanding slurry mixing effects on the fast charging capability of lithium-ion battery cells: Methodology and case study , 2022, Journal of Power Sources.

[2]  Bin Zhao,et al.  Effect of Various Components on Time-Dependent Rheological Behavior of Cathode Slurries for Lithium-Ion Batteries , 2022, Journal of Electronic Materials.

[3]  Yunfei Gao,et al.  Concentration dependence of yield stress, thixotropy, and viscoelasticity rheological behavior of lithium-ion battery slurry , 2022, Ceramics International.

[4]  Yadong Wang,et al.  A multifunctional polyimide enabled high performance silicon composite anode materials for Li-Ion batteries , 2022, Journal of Power Sources.

[5]  W. Yue,et al.  Two-Dimensional Graphene-Based Li4Ti5O12 with Hierarchical Pore Structure and Large Pseudocapacitive Effect as High-Rate and Long-Cycle Anode Material for Lithium-Ion Batteries , 2022, Electrochimica Acta.

[6]  Yifan Wang,et al.  3D Ordered Porous Nanostructure Confers Fast Charge Transfer Rate and Reduces the Electrode Polarization in Thick Electrode. , 2021, Small.

[7]  Byung Gon Kim,et al.  3D Carbon-Based Porous Anode with a Pore-Size Gradient for High-Performance Lithium Metal Batteries. , 2021, ACS applied materials & interfaces.

[8]  Qiang Zhang,et al.  Advances in Lithium–Sulfur Batteries: From Academic Research to Commercial Viability , 2021, Advanced materials.

[9]  Yadong Wang,et al.  Electrochemical Kinetic Study of a Polyimide Anode for Lithium-Ion Batteries Using the AC Impedance Technique , 2021 .

[10]  Kent Snyder,et al.  An effective approach to improve electrochemical performance of thick electrodes , 2021, Ionics.

[11]  Jun Wang,et al.  Polyimide schiff base as a high-performance anode material for lithium-ion batteries , 2021 .

[12]  G. Ceder,et al.  Promises and Challenges of Next-Generation "Beyond Li-ion" Batteries for Electric Vehicles and Grid Decarbonization. , 2020, Chemical reviews.

[13]  Junghoon Yang,et al.  A simple method for producing bio-based anode materials for lithium-ion batteries , 2020 .

[14]  Changzheng Wu,et al.  Recent Advances on the Modulation of Electrocatalysts Based on Transition Metal Nitrides for the Rechargeable Zn-Air Battery , 2020 .

[15]  Juncai Sun,et al.  TiO2 quantum dots confined in 3D carbon framework for outstanding surface lithium storage with improved kinetics. , 2020, Journal of colloid and interface science.

[16]  W. Chu,et al.  High-Density Planar-like Fe2N6 Structure Catalyzes Efficient Oxygen Reduction , 2020 .

[17]  Yang-Tse Cheng,et al.  Lithium Ion Battery Electrodes Made Using Dimethyl Sulfoxide (DMSO)—A Green Solvent , 2020 .

[18]  Aamod V. Desai,et al.  Advances in Organic Anode Materials for Na‐/K‐Ion Rechargeable Batteries , 2020, ChemSusChem.

[19]  E. Abdel-Fattah,et al.  Polyimide Surface Modification Using He-H2O Atmospheric Pressure Plasma Jet-Discharge Power Effect , 2020 .

[20]  A. Lennox,et al.  Electrode Materials in Modern Organic Electrochemistry , 2020, Angewandte Chemie.

[21]  J. Scott,et al.  Advances in the green chemistry of coordination polymer materials , 2020, Green Chemistry.

[22]  Yadong Wang,et al.  Multi carbonyl polyimide as high capacity anode materials for lithium ion batteries , 2020 .

[23]  S. Adams,et al.  Perylenedianhydride-Based Polyimides as Organic Cathodes for Rechargeable Lithium and Sodium Batteries , 2020 .

[24]  R. Stolkin,et al.  Recycling lithium-ion batteries from electric vehicles , 2019, Nature.

[25]  Jae‐Kwang Kim Electrode Materials with Crater-type Morphology Prepared by Electrospraying for High-Performance Lithium Ion Batteries. , 2019, ChemSusChem.

[26]  Qinghua Zhang,et al.  Hierarchical multicarbonyl polyimide architectures as promising anode active materials for high-performance lithium/sodium ion batteries , 2019, Journal of Materials Chemistry A.

[27]  Qinhe Pan,et al.  Metal–organic framework-based materials for the recovery of uranium from aqueous solutions , 2019, Inorganic Chemistry Frontiers.

[28]  Jun Cai,et al.  Electrical Breakdown‐Induced Tunable Piezoresistivity in Graphene/Polyimide Nanocomposites for Flexible Force Sensor Applications , 2018, Advanced Materials Technologies.

[29]  K. Amine,et al.  30 Years of Lithium‐Ion Batteries , 2018, Advanced materials.

[30]  A. Witkowska,et al.  Binder-induced surface structure evolution effects on Li-ion battery performance , 2018 .

[31]  Zhe-sheng Feng,et al.  Preparation and characterization of flexible lithium iron phosphate/graphene/cellulose electrode for lithium ion batteries. , 2018, Journal of colloid and interface science.

[32]  Srithar Rajoo,et al.  A review of Battery Electric Vehicle technology and readiness levels , 2017 .

[33]  J. Arnold,et al.  UV Coating Processes to Enhance Li Ion Battery Performance and Reduce Costs , 2017 .

[34]  Jusef Hassoun,et al.  Lithium-ion batteries for sustainable energy storage: recent advances towards new cell configurations , 2017 .

[35]  C. Li,et al.  A high-temperature stable ceramic-coated separator prepared with polyimide binder/Al2O3 particles for lithium-ion batteries , 2016 .

[36]  H. Pan,et al.  Solvent-Free Manufacturing of Electrodes for Lithium-ion Batteries , 2016, Scientific Reports.

[37]  Qian Yang,et al.  Large‐Area Polyimide/SWCNT Nanocable Cathode for Flexible Lithium‐Ion Batteries , 2015, Advanced materials.

[38]  Myung-Hyun Ryou,et al.  Highly Adhesive and Soluble Copolyimide Binder: Improving the Long-Term Cycle Life of Silicon Anodes in Lithium-Ion Batteries. , 2015, ACS applied materials & interfaces.

[39]  L. Croguennec,et al.  Recent achievements on inorganic electrode materials for lithium-ion batteries. , 2015, Journal of the American Chemical Society.

[40]  M. Guler,et al.  Preparation of Sn–Co alloy electrode for lithium ion batteries by pulse electrodeposition , 2014 .

[41]  Yong Li,et al.  A review on structure model and energy system design of lithium-ion battery in renewable energy vehicle , 2014 .

[42]  T. Scheytt,et al.  Impact of materials used in lab and field experiments on the recovery of organic micropollutants. , 2014, The Science of the total environment.

[43]  Joong-Kee Lee,et al.  Effect of polyimide binder on electrochemical characteristics of surface-modified silicon anode for lithium ion batteries , 2013 .

[44]  John B Goodenough,et al.  The Li-ion rechargeable battery: a perspective. , 2013, Journal of the American Chemical Society.

[45]  Seung M. Oh,et al.  Sodium Terephthalate as an Organic Anode Material for Sodium Ion Batteries , 2012, Advanced materials.

[46]  Jun Chen,et al.  Organic Electrode Materials for Rechargeable Lithium Batteries , 2012 .

[47]  Ju-tang Sun,et al.  How many lithium ions can be inserted onto fused C6 aromatic ring systems? , 2012, Angewandte Chemie.

[48]  Kazunori Arifuku,et al.  Organic tailored batteries materials using stable open-shell molecules with degenerate frontier orbitals. , 2011, Nature materials.

[49]  Tao Huang,et al.  A novel method for preparation of macroposous lithium nickel manganese oxygen as cathode material for lithium ion batteries , 2011 .

[50]  Cheng Zhang,et al.  Surface modification of polyimide films using unipolar nanosecond-pulse DBD in atmospheric air , 2010 .

[51]  J. Goodenough,et al.  Challenges for Rechargeable Li Batteries , 2010 .

[52]  Jiro Iriyama,et al.  Cell properties for modified PTMA cathodes of organic radical batteries , 2007 .

[53]  K. Fehse,et al.  Highly Conductive Polymer Anodes as Replacements for Inorganic Materials in High‐Efficiency Organic Light‐Emitting Diodes , 2007 .

[54]  S. Deki,et al.  Surface Modification-Based Synthesis and Microstructural Tuning of Nanocomposite Layers: Monodispersed Copper Nanoparticles in Polyimide Resins , 2003 .

[55]  F. Xu,et al.  Formation of Silver Nanowires Through a Sandwiched Reduction Process , 2003 .

[56]  J. Tirado Inorganic materials for the negative electrode of lithium-ion batteries: state-of-the-art and future prospects , 2003 .

[57]  P. Novák,et al.  Electrochemically Active Polymers for Rechargeable Batteries. , 1997, Chemical reviews.

[58]  R. Greene,et al.  Conducting Organic Materials , 1984, Science.

[59]  Zhenghe Xu,et al.  Electric potential-determined redox intermediates for effective recycling of spent lithium-ion batteries , 2022, Green Chemistry.

[60]  Huaqing Xie,et al.  Heat-treatment recycling of waste toner and its applications in lithium ion batteries , 2018 .

[61]  H. Pham,et al.  Fluorinated Polyimide as a Novel High‐Voltage Binder for High‐Capacity Cathode of Lithium‐Ion Batteries , 2018 .

[62]  J. Tarascon,et al.  Towards greener and more sustainable batteries for electrical energy storage. , 2015, Nature chemistry.