Solution behavior and structural diversity of bis(dialkylphosphino)methane complexes of palladium.

The preparation of dipalladium complexes containing sterically nondemanding diphosphine (P-P) ligands of the type R(2)PCH(2)PR(2) where R = Me (dmpm) or Et (depm) is reported. Variable-temperature (1)H NMR spectra of the Pd(I)(2) complexes Pd(2)X(2)(dmpm)(2) (X = Cl, Br, or I; the P-P ligands in the Pd(2) complexes are always bridged, but for convenience, the micro -symbol is omitted) show the complexes to be fluxional in solution, the barriers to a ring-flipping process being DeltaG( double dagger ) = 37.9, 39.0, and 43.2 +/- 0.9 kJ mol(-)(1) for the chloro, bromo, and iodo complexes, respectively. Treatment of Pd(2)X(2)(P-P)(2) (X = Cl or Br) with X(2) generates the stable, face-to-face Pd(II)(2) derivatives trans-Pd(2)X(4)(P-P)(2), while oxidation of Pd(2)I(2)(P-P)(2) complexes with I(2) generates a new type of symmetrically di-iodo-bridged, five-coordinate complexes Pd(2)I(2)(micro -I)(2)(dmpm)(2) and Pd(2)I(2)(micro -I)(2)(depm)(2). The molecular crystal structures of four dipalladium(II) complexes are described: trans-Pd(2)Cl(4)(dmpm)(2).2CHCl(3), trans-Pd(2)Br(4)(dmpm)(2), trans-Pd(2)Cl(4)(depm)(2), and Pd(2)I(2)(micro -I)(2)(dmpm)(2). Solution NMR and UV-vis absorption spectra are consistent with the solid-state structures determined by X-ray diffraction. The stability of the dimeric Pd(II) complexes is attributed primarily to ligand steric factors.