Design, Fabrication and Control of Spherobot: A Spherical Mobile Robot

In the literature, Spherobot refers to a mobile robot with a spherical exo-skeleton and a propulsion mechanism that uses unbalance masses in a tetrahedral arrangement. A modified design of Spherobot, that is better suited to fabrication, is presented in this paper. The modified propulsion mechanism and other components of the design are discussed in detail to highlight the challenges of fabrication. An adaptive estimation and control algorithm used for position control of the unbalance masses and a steering algorithm used for motion control of Spherobot are also discussed. Experimental results of the Spherobot navigating a hallway with bends is presented.

[1]  Ravi N. Banavar,et al.  Motion analysis of a spherical mobile robot , 2009, Robotica.

[2]  B. Pasik-Duncan,et al.  Adaptive Control , 1996, IEEE Control Systems.

[3]  Jorge Dias,et al.  Design and control of a spherical mobile robot , 2003 .

[4]  Jack A. Jones,et al.  A preliminary design for a spherical inflatable microrover for planetary exploration , 2008 .

[5]  Bing Li,et al.  A spherical hopping robot for exploration in complex environments , 2009, 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[6]  Atsushi Koshiyama,et al.  Development and Motion Control of the All-Direction Steering-Type Mobile Robot (1st Report: Analyses and Experiments on Postural Stability and Ascent/Descent on a Slope) , 1993, J. Robotics Mechatronics.

[7]  Mark A. Minor,et al.  Simple motion planning strategies for spherobot: a spherical mobile robot , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[8]  Ranjan Mukherjee,et al.  Reconfiguration of a Rolling Sphere: A Problem in Evolute-Involute Geometry , 2004 .

[9]  A. Gentile,et al.  Rough-terrain traversability for a cylindrical shaped mobile robot , 2004, Proceedings of the IEEE International Conference on Mechatronics, 2004. ICM '04..

[10]  Ranjan Mukherjee,et al.  Design considerations in the development of a spherical mobile robot , 2001, SPIE Defense + Commercial Sensing.

[11]  Puyan Mojabi,et al.  Introducing August: a novel strategy for an omnidirectional spherical rolling robot , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[12]  H. Tamaki,et al.  Position and attitude control of a spherical rolling robot equipped with a gyro , 2006, 9th IEEE International Workshop on Advanced Motion Control, 2006..

[13]  R. Mukherjee,et al.  Dynamic Analysis of Rectilinear Motion of a Self-Propelling Disk With Unbalance Masses , 2001 .

[14]  Q. Zhan,et al.  Motion control of spherical robot based on conservation of angular momentum , 2009, 2009 International Conference on Mechatronics and Automation.

[15]  E de Margerie,et al.  Artificial evolution of the morphology and kinematics in a flapping-wing mini-UAV , 2007, Bioinspiration & biomimetics.

[16]  Antonio Bicchi,et al.  Introducing the "SPHERICLE": an experimental testbed for research and teaching in nonholonomy , 1997, Proceedings of International Conference on Robotics and Automation.

[17]  M Maarten Steinbuch,et al.  Advanced motion control , 2003 .

[18]  Sunil K. Agrawal,et al.  Spherical rolling robot: a design and motion planning studies , 2000, IEEE Trans. Robotics Autom..

[19]  Mitsuji Sampei,et al.  Hopping motion analysis of 'superball'-like spherical robot based on feedback control , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[20]  Yangsheng Xu,et al.  A single-wheel, gyroscopically stabilized robot , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[21]  Jeffrey Antol,et al.  A New Vehicle for Planetary Surface Exploration: The Mars Tumbleweed , 2005 .

[22]  Karl Johan Åström,et al.  Adaptive Control (2 ed.) , 1995 .

[23]  Shinichi Hirai,et al.  Circular/Spherical Robots for Crawling and Jumping , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[24]  Heinrich M. Jaeger,et al.  The first steps of a robot based on jamming skin enabled locomotion , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[25]  François Michaud,et al.  Roball, the Rolling Robot , 2002, Auton. Robots.

[26]  Ernest W. Flick SMOOTH-ON, INC. , 1993 .

[27]  P. Wide,et al.  An Autonomous Spherical Robot for Security Tasks , 2006, 2006 IEEE International Conference on Computational Intelligence for Homeland Security and Personal Safety.

[28]  Hagen Schempf,et al.  Cyclops: miniature robotic reconnaissance system , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[29]  Ranjan Mukherjee,et al.  Exponential stabilization of the rolling sphere , 2004, Autom..

[30]  Yan Wang,et al.  Motion control of a spherical mobile robot , 1996, Proceedings of 4th IEEE International Workshop on Advanced Motion Control - AMC '96 - MIE.

[31]  Christopher Batten,et al.  Kickbot : A Spherical Autonomous Robot , 2008 .

[32]  R. Mukherjee,et al.  Motion Planning for a Spherical Mobile Robot: Revisiting the Classical Ball-Plate Problem , 2002 .

[33]  Bo Zhao,et al.  Study on turning in place of a spherical robot based on stick-slip principle , 2009, 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[34]  QingXuan Jia,et al.  Analysis of Actuation for a Spherical Robot , 2008, 2008 IEEE Conference on Robotics, Automation and Mechatronics.

[35]  Alberto Behar,et al.  An Overview of Wind-Driven Rovers for Planetary Exploration , 2005 .

[36]  Ranjan Mukherjee,et al.  Class of Rotations Induced by Spherical Polygons , 2000 .

[37]  Young Min Kim,et al.  KisBot: new spherical robot with arms , 2010 .

[38]  Rhodri H. Armour,et al.  Rolling in nature and robotics: A review , 2006 .

[39]  Tomi Ylikorpi,et al.  Ball-Shaped Robots: An Historical Overview and Recent Developments at TKK , 2005, FSR.