Determination of the degrees of P-property and nonnegative invertibility for a fuzzy matrix

Checking P-property and nonnegative invertibility of real and interval matrices has been widely investigated in the literature. In this paper, we try to extend the study to fuzzy matrices of fuzzy numbers, by employing the methods used for the corresponding interval matrices. To determine the degree of P-property and nonnegative invertibility for a fuzzy matrix, we propose an algorithm. Applications in matrix stability are given via the numerical examples.

[1]  P. Hartman Ordinary Differential Equations , 1965 .

[2]  E. Walter,et al.  Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics , 2001 .

[3]  Michael J. Tsatsomeros,et al.  Principal minors, Part I: A method for computing all the principal minors of a matrix , 2006 .

[4]  Wen-June Wang,et al.  Stability confidence for fuzzy matrices , 1999, Fuzzy Sets Syst..

[5]  J. Rohn Systems of linear interval equations , 1989 .

[6]  Mehdi Dehghan,et al.  Solution of the fully fuzzy linear systems using the decomposition procedure , 2006, Appl. Math. Comput..

[7]  Vladik Kreinovich,et al.  Optimal Finite Characterization of Linear Problems with Inexact Data , 2005, Reliab. Comput..

[8]  Juan M. Peña,et al.  A Class of P-Matrices with Applications to the Localization of the Eigenvalues of a Real Matrix , 2000, SIAM J. Matrix Anal. Appl..

[9]  M. Fiedler,et al.  Some generalizations of positive definiteness and monotonicity , 1966 .

[10]  Daniel Hershkowitz,et al.  Recent directions in matrix stability , 1992 .

[11]  M. Mansour Robust stability of interval matrices , 1989, Proceedings of the 28th IEEE Conference on Decision and Control,.

[12]  R. B. Kearfott,et al.  Applications of interval computations , 1996 .

[13]  V. Kreinovich Computational Complexity and Feasibility of Data Processing and Interval Computations , 1997 .

[14]  Richard W. Cottle,et al.  Linear Complementarity Problem. , 1992 .

[15]  D. Dubois,et al.  Systems of linear fuzzy constraints , 1980 .

[16]  Jiri Rohn,et al.  Interval P-Matrices , 1996, SIAM J. Matrix Anal. Appl..

[17]  Uwe Schäfer,et al.  A Linear Complementarity Problem with a P-Matrix , 2004, SIAM Rev..

[18]  Vladik Kreinovich,et al.  Nested Intervals and Sets: Concepts, Relations to Fuzzy Sets, and Applications , 1996 .

[19]  David S. Watkins,et al.  Fundamentals of matrix computations , 1991 .

[20]  Didier Dubois,et al.  Fuzzy sets and systems ' . Theory and applications , 2007 .

[21]  D. Gale,et al.  The Jacobian matrix and global univalence of mappings , 1965 .

[22]  Mehdi Dehghan,et al.  Solution of the fully fuzzy linear systems using iterative techniques , 2007 .

[23]  J. Buckley,et al.  Solving systems of linear fuzzy equations , 1991 .