A Modularity Approach for a Fragment of ALC

In this paper we address the principle of modularity of ontologies in description logics. It turns out that with existing accounts of modularity of ontologies we do not completely avoid unforeseen interactions between module components, and modules designed in those ways may be as complex as whole theories. We here give a more fine-grained paradigm for modularizing descriptions. We propose algorithms that check whether a given terminology is modular and that also help the designer making it modular, if needed. Completeness, correctness and termination results are demonstrated for a fragment of ${\mathcal{ALC}}$. We also present the properties that ontologies that are modular in our sense satisfy w.r.t. reasoning services.

[1]  Andreas Herzig,et al.  Domain descriptions should be modular , 2004, NMR.

[2]  James W. Garson Modularity and Relevant Logic , 1989, Notre Dame J. Formal Log..

[3]  Thierry Boy de la Tour Minimizing the Number of Clauses by Renaming , 1990, CADE.

[4]  Andreas Herzig,et al.  Cohesion, coupling and the meta-theory of actions , 2005, IJCAI.

[5]  G. S. Tseitin On the Complexity of Derivation in Propositional Calculus , 1983 .

[6]  Michel C. A. Klein,et al.  Integrity and Change in Modular Ontologies , 2003, IJCAI.

[7]  William Craig,et al.  Linear reasoning. A new form of the Herbrand-Gentzen theorem , 1957, Journal of Symbolic Logic.

[8]  Andreas Herzig,et al.  On modularity of theories , 2004 .

[9]  Bijan Parsia,et al.  Modularity and Web Ontologies , 2006, KR.

[10]  Willem Conradie,et al.  Definitorially Complete Description Logics , 2006, KR.

[11]  Diego Calvanese,et al.  The Description Logic Handbook: Theory, Implementation, and Applications , 2003, Description Logic Handbook.

[12]  Andreas Herzig,et al.  Metatheory of actions: Beyond consistency , 2006, Artif. Intell..

[13]  Andreas Herzig,et al.  Elaborating Domain Descriptions , 2006, ECAI.

[14]  Thierry Boy de la Tour An Optimality Result for Clause Form Translation , 1992, J. Symb. Comput..

[15]  Werner Nutt,et al.  Basic Description Logics , 2003, Description Logic Handbook.

[16]  Christoph Weidenbach,et al.  Computing Small Clause Normal Forms , 2001, Handbook of Automated Reasoning.

[17]  Carsten Lutz,et al.  Did I Damage My Ontology? A Case for Conservative Extensions in Description Logics , 2006, KR.

[18]  David A. Plaisted,et al.  A Structure-Preserving Clause Form Translation , 1986, J. Symb. Comput..

[19]  Frank van Harmelen,et al.  Extensions to the Rippling-Out Tactic for Guiding Inductive Proofs , 1990, CADE.