On the dispersion of dirty paper coding

This paper studies the second-order asymptotics of the coding rate for a given error probability in the setting of dirty paper coding (Costa, 1983) with an almost-sure power constraint. It is shown that the dispersion is the same as if the state sequence were absent, thus strengthening the analogous capacity result. The result holds under mild technical conditions on the state sequence, and is not limited to the ergodic case.

[1]  A. Lapidoth,et al.  Generalized writing on dirty paper , 2002, Proceedings IEEE International Symposium on Information Theory,.

[2]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[3]  Vincent Yan Fu Tan,et al.  Non-asymptotic and second-order achievability bounds for source coding with side-information , 2013, 2013 IEEE International Symposium on Information Theory.

[4]  Tie Liu,et al.  On dispersion of modulo lattice additive noise channels , 2011, 2011 8th International Symposium on Wireless Communication Systems.

[5]  Vincent Yan Fu Tan,et al.  Nonasymptotic and Second-Order Achievability Bounds for Coding With Side-Information , 2013, IEEE Transactions on Information Theory.

[6]  Neri Merhav Universal decoding for memoryless Gaussian channels with a deterministic interference , 1993, IEEE Trans. Inf. Theory.

[7]  Pierre Moulin,et al.  On error exponents of modulo lattice additive noise channels , 2006, IEEE Transactions on Information Theory.

[8]  A. J. Stam LIMIT THEOREMS FOR UNIFORM DISTRIBUTIONS ON SPHERES IN HIGH-DIMENSIONAL EUCLIDEAN SPACES , 1982 .

[9]  Gou Hosoya,et al.  国際会議参加報告:2014 IEEE International Symposium on Information Theory , 2014 .

[10]  Vincent Y. F. Tan,et al.  Second-order asymptotics for the gaussian MAC with degraded message sets , 2013, 2014 IEEE International Symposium on Information Theory.

[11]  H. Vincent Poor,et al.  Channel Coding Rate in the Finite Blocklength Regime , 2010, IEEE Transactions on Information Theory.

[12]  Brian L. Hughes,et al.  Exponential error bounds for random codes on Gaussian arbitrarily varying channels , 1991, IEEE Trans. Inf. Theory.

[13]  Amin Gohari,et al.  A technique for deriving one-shot achievability results in network information theory , 2013, 2013 IEEE International Symposium on Information Theory.

[14]  Uri Erez,et al.  Achieving 1/2 log (1+SNR) on the AWGN channel with lattice encoding and decoding , 2004, IEEE Transactions on Information Theory.

[15]  Jonathan Scarlett,et al.  On the Dispersions of the Gel’fand–Pinsker Channel and Dirty Paper Coding , 2013, IEEE Transactions on Information Theory.

[16]  Max H. M. Costa,et al.  Writing on dirty paper , 1983, IEEE Trans. Inf. Theory.

[17]  Masahito Hayashi,et al.  Information Spectrum Approach to Second-Order Coding Rate in Channel Coding , 2008, IEEE Transactions on Information Theory.

[18]  Jonathan Scarlett,et al.  Second-Order Rate of Constant-Composition Codes for the Gel'fand-Pinsker Channel , 2013, ArXiv.