On the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivatives
暂无分享,去创建一个
[1] Wolfgang Hackbusch. Wavelet approximation of correlated wavefunctions � , 2003 .
[2] Barry Simon,et al. Schrödinger operators in the twentieth century , 2000 .
[3] Israel Michael Sigal,et al. The quantum N-body problem , 2000 .
[4] A. Szabó,et al. Modern quantum chemistry : introduction to advanced electronic structure theory , 1982 .
[5] J. Neumann. Mathematische grundlagen der Quantenmechanik , 1935 .
[6] Wolfgang Hackbusch,et al. Wavelet approximation of correlated wave functions. II. Hyperbolic wavelets and adaptive approximation schemes , 2002 .
[7] Tosio Kato. Fundamental properties of Hamiltonian operators of Schrödinger type , 1951 .
[8] Reinhold Schneider,et al. Wavelet approximation of correlated wave functions. I. Basics , 2002 .
[9] M. Griebel,et al. On the computation of the eigenproblems of hydrogen helium in strong magnetic and electric fields with the sparse grid combination technique , 2000 .
[10] R. DeVore,et al. Hyperbolic Wavelet Approximation , 1998 .
[11] R. Parr. Density-functional theory of atoms and molecules , 1989 .
[12] Wolfgang Hackbusch,et al. The Efficient Computation of Certain Determinants Arising in the Treatment of Schrödinger's Equations , 2001, Computing.
[13] M. Ratner. Molecular electronic-structure theory , 2000 .
[14] M. Griebel,et al. Optimized Tensor-Product Approximation Spaces , 2000 .
[15] T. Hoffmann-Ostenhof,et al. Local properties of Coulombic wave functions , 1994 .
[16] T. Hoffmann-Ostenhof,et al. Electron Wavefunctions and Densities for Atoms , 2000, math/0005018.
[17] Søren Fournais,et al. The Electron Density is Smooth Away from the Nuclei , 2002 .