Glass transition and phase state of organic compounds: dependency on molecular properties and implications for secondary organic aerosols in the atmosphere.

Recently, it has been proposed that organic aerosol particles in the atmosphere can exist in an amorphous semi-solid or solid (i.e. glassy) state. In this perspective, we analyse and discuss the formation and properties of amorphous semi-solids and glasses from organic liquids. Based on a systematic survey of a wide range of organic compounds, we present estimates for the glass forming properties of atmospheric secondary organic aerosol (SOA). In particular we investigate the dependence of the glass transition temperature T(g) upon various molecular properties such as the compounds' melting temperature, their molar mass, and their atomic oxygen-to-carbon ratios (O:C ratios). Also the effects of mixing different compounds and the effects of hygroscopic water uptake depending on ambient relative humidity are investigated. In addition to the effects of temperature, we suggest that molar mass and water content are much more important than the O:C ratio for characterizing whether an organic aerosol particle is in a liquid, semi-solid, or glassy state. Moreover, we show how the viscosity in liquid, semi-solid and glassy states affect the diffusivity of those molecules constituting the organic matrix as well as that of guest molecules such as water or oxidants, and we discuss the implications for atmospheric multi-phase processes. Finally, we assess the current state of knowledge and the level of scientific understanding, and we propose avenues for future studies to resolve existing uncertainties.

[1]  S. Nayak,et al.  Novel differential scanning calorimetric studies of supercooled organic liquids , 1993 .

[2]  John H. Seinfeld,et al.  Organic aerosol components observed in Northern Hemispheric datasets from Aerosol Mass Spectrometry , 2010 .

[3]  C. N. Hewitt,et al.  A global model of natural volatile organic compound emissions , 1995 .

[4]  M. Schnaiter,et al.  Supplementary information for ‘ Heterogeneous nucleation of ice particles on glassy aerosols under cirrus conditions ’ , 2010 .

[5]  C. Angell,et al.  Formation of Glasses from Liquids and Biopolymers , 1995, Science.

[6]  P. Smith Reagents for organic synthesis. L. F. Fieser and M. Fieser. Wiley, New York, 1967. ix + 1457 pp. $27.50 , 1969 .

[7]  S. Srčič,et al.  Thermal analysis of glassy pharmaceuticals , 1995 .

[8]  Yinon Rudich,et al.  Aging of organic aerosol: bridging the gap between laboratory and field studies. , 2007, Annual review of physical chemistry.

[9]  Qi Zhang,et al.  Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically‐influenced Northern Hemisphere midlatitudes , 2007 .

[10]  G. Walrafen,et al.  Structures of Concentrated Sulfuric Acid Determined from Density, Conductivity, Viscosity, and Raman Spectroscopic Data , 2000 .

[11]  P. Couchman A theory of the molecular-mass dependence of glass transition temperatures for polydisperse homopolymers , 1980 .

[12]  S. Nayak,et al.  Dielectric relaxation studies of glass formation in some esters of phthalic acid , 1993 .

[13]  P. Buseck,et al.  Atmospheric tar balls from biomass burning in Mexico , 2009 .

[14]  H. Wernli,et al.  A novel model to predict the physical state of atmospheric H 2 SO 4 /NH 3 /H 2 O aerosol particles , 2002 .

[15]  C. Ruehl,et al.  How quickly do cloud droplets form on atmospheric particles , 2007 .

[16]  B. J. Levien A Physicochemical Study of Aqueous Citric Acid Solutions. , 1955 .

[17]  R. Kurdi,et al.  In-situ Formation of Light-Absorbing Organic Matter in Cloud Water , 2003 .

[18]  M. Tolbert,et al.  Formation of nitrogen-containing oligomers by methylglyoxal and amines in simulated evaporating cloud droplets. , 2011, Environmental science & technology.

[19]  S. Murthy Dielectric Relaxation in Monohydroxy Alcohols and Its Connection to the Glass Transition Process , 1996 .

[20]  Li-Min Wang,et al.  Calorimetric versus kinetic glass transitions in viscous monohydroxy alcohols. , 2008, The Journal of chemical physics.

[21]  Jonathan P. Reid,et al.  Measurements of the timescales for the mass transfer of water in glassy aerosol at low relative humidity and ambient temperature , 2011 .

[22]  Li-Min Wang,et al.  Fragility and thermodynamics in nonpolymeric glass-forming liquids. , 2006, The Journal of chemical physics.

[23]  R. Parker,et al.  Effect of water as a diluent on the glass transition behaviour of malto-oligosaccharides, amylose and amylopectin. , 1989, International journal of biological macromolecules.

[24]  H. Kanno,et al.  Raman Study of Sulfuric Acid at Low Temperatures , 1998 .

[25]  A. Lesikar On the self-association of the normal alcohols and the glass transition in alcohol-alcohol solutions , 1977 .

[26]  Scot T. Martin,et al.  Phase Transitions of Aqueous Atmospheric Particles. , 2000, Chemical reviews.

[27]  Tami C. Bond,et al.  Critical assessment of the current state of scientific knowledge, terminology, and research needs concerning the role of organic aerosols in the atmosphere, climate, and global change , 2005 .

[28]  A. Miura,et al.  Molecular design for nonpolymeric organic dye glasses with thermal stability : relations between thermodynamic parameters and amorphous properties , 1993 .

[29]  D. Froelich,et al.  Glass transition temperature of ideal polymeric networks , 1976 .

[30]  R. D. Lundberg,et al.  Lactone polymers. I. Glass transition temperature of poly‐ε‐caprolactone by means on compatible polymer mixtures , 1969 .

[31]  John H. Seinfeld,et al.  Cloud condensation nucleus activation properties of biogenic secondary organic aerosol , 2005 .

[32]  S. Martin,et al.  Cloud condensation nuclei in pristine tropical rainforest air of Amazonia: size-resolved measurements and modeling of atmospheric aerosol composition and CCN activity , 2009 .

[33]  M. Petters,et al.  A single parameter representation of hygroscopic growth and cloud condensation nucleus activity , 2006 .

[34]  G. Tiers Materials science of organic compounds: Part 3. Glass-formers, vitriphores, Tg, and molecular chirality , 1993 .

[35]  Thomas Koop,et al.  Review of the vapour pressures of ice and supercooled water for atmospheric applications , 2005 .

[36]  W. Giauque,et al.  The Thermodynamic Properties of Aqueous Sulfuric Acid Solutions and Hydrates from 15 to 300°K.1 , 1960 .

[37]  M. Petters,et al.  Cloud droplet activation of polymerized organic aerosol , 2006 .

[38]  M. Claeys,et al.  Terpenylic acid and related compounds: precursors for dimers in secondary organic aerosol from the ozonolysis of α- and β-pinene , 2010 .

[39]  P. Flory,et al.  Second‐Order Transition Temperatures and Related Properties of Polystyrene. I. Influence of Molecular Weight , 1950 .

[40]  K. H. Fung,et al.  Hydration and Raman scattering studies of levitated microparticles: Ba(NO3)2, Sr(NO3)2, and Ca(NO3)2 , 1997 .

[41]  John H. Seinfeld,et al.  The formation, properties and impact of secondary organic aerosol: current and emerging issues , 2009 .

[42]  Bruno C. Hancock,et al.  Characteristics and significance of the amorphous state in pharmaceutical systems. , 1997, Journal of pharmaceutical sciences.

[43]  J. Booth,et al.  Determining the critical relative humidity for moisture-induced phase transitions. , 2004, International journal of pharmaceutics.

[44]  Pablo G. Debenedetti,et al.  Supercooled liquids and the glass transition , 2001, Nature.

[45]  E. Hope,et al.  CCLXVI.—The addition of hydrogen cyanide to derivatives of glutaconic acid. Part I. The addition of hydrogen cyanide to ethyl α-cyano-β-methylglutaconate and its homologues , 1922 .

[46]  J. D. de Gouw,et al.  Organic aerosols in the Earth's atmosphere. , 2009, Environmental science & technology.

[47]  J. Pankow An absorption model of GAS/Particle partitioning of organic compounds in the atmosphere , 1994 .

[48]  Pablo G. Debenedetti,et al.  Engineering pharmaceutical stability with amorphous solids , 2002 .

[49]  Annmarie G. Carlton,et al.  Oligomers formed through in-cloud methylglyoxal reactions: Chemical composition, properties, and mechanisms investigated by ultra-high resolution FT-ICR mass spectrometry , 2008 .

[50]  R. Moreira,et al.  Viscosity and Textural Attributes of Reduced-fat Peanut Pastes , 2000 .

[51]  C. Angell,et al.  Relaxation dynamics and ionic conductivity in a fragile plastic crystal. , 2010, The Journal of chemical physics.

[52]  James F. Pankow,et al.  An absorption model of the gas/aerosol partitioning involved in the formation of secondary organic aerosol , 1994 .

[53]  M. R. Carpenter,et al.  Measurement of the Glass‐Transition Temperature of Simple Liquids , 1967 .

[54]  A. Lesikar On the glass transition in organic halide–alcohol mixtures , 1975 .

[55]  John H. Seinfeld,et al.  3‐methyl‐1,2,3‐butanetricarboxylic acid: An atmospheric tracer for terpene secondary organic aerosol , 2007 .

[56]  R Zenobi,et al.  Secondary organic aerosols from anthropogenic and biogenic precursors. , 2005, Faraday discussions.

[57]  G. P. Johari,et al.  GLASS TRANSITION AND SECONDARY RELAXATIONS IN MOLECULAR LIQUIDS AND CRYSTALS , 1976 .

[58]  S. Yanniotis,et al.  Effect of moisture content on the viscosity of honey at different temperatures , 2006 .

[59]  H. Suga,et al.  The Glassy Crystalline State —A Non-Equilibrium State of Plastic Crystals , 1970 .

[60]  A. Ravishankara,et al.  Evidence for liquid-like and nonideal behavior of a mixture of organic aerosol components , 2008, Proceedings of the National Academy of Sciences.

[61]  J. Slowik,et al.  Slower CCN growth kinetics of anthropogenic aerosol compared to biogenic aerosol observed at a rural site , 2010 .

[62]  Mian Chin,et al.  Effects of the physical state of tropospheric ammonium-sulfate-nitrate particles on global aerosol direct radiative forcing , 2003 .

[63]  Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol. , 2011, Nature chemistry.

[64]  M. Andreae,et al.  Formation of Secondary Organic Aerosols Through Photooxidation of Isoprene , 2004, Science.

[65]  A. Bertram,et al.  Inhibition of efflorescence in mixed organic-inorganic particles at temperatures less than 250 K. , 2010, Physical chemistry chemical physics : PCCP.

[66]  R. F. Boyer Relationship of First- to Second-Order Transition Temperatures for Crystalline High Polymers , 1954 .

[67]  C. Percival,et al.  Structural analysis of oligomeric molecules formed from the reaction products of oleic acid ozonolysis. , 2006, Environmental science & technology.

[68]  R. F. Boyer The Relation of Transition Temperatures to Chemical Structure in High Polymers , 1963 .

[69]  C. Angell Liquid fragility and the glass transition in water and aqueous solutions. , 2002, Chemical reviews.

[70]  C. Chan,et al.  Hygroscopic Study of Glucose, Citric Acid, and Sorbitol Using an Electrodynamic Balance: Comparison with UNIFAC Predictions , 2001 .

[71]  B. Luo,et al.  Ultra-slow water diffusion in aqueous sucrose glasses. , 2011, Physical chemistry chemical physics : PCCP.

[72]  U. Pöschl,et al.  Amorphous and crystalline aerosol particles interacting with water vapor: conceptual framework and experimental evidence for restructuring, phase transitions and kinetic limitations , 2009 .

[73]  A. Córdova,et al.  Products and kinetics of the liquid-phase reaction of glyoxal catalyzed by ammonium ions (NH4(+)). , 2009, The journal of physical chemistry. A.

[74]  Y. Roos Melting and glass transitions of low molecular weight carbohydrates , 1993 .

[75]  Thomas Peter,et al.  Mixing of the Organic Aerosol Fractions: Liquids as the Thermodynamically Stable Phases , 2004 .

[76]  U. Pöschl,et al.  Kinetic multi-layer model of aerosol surface and bulk chemistry (KM-SUB): the influence of interfacial transport and bulk diffusion on the oxidation of oleic acid by ozone , 2010 .

[77]  T. Petäjä,et al.  Relationship between aerosol oxidation level and hygroscopic properties of laboratory generated secondary organic aerosol (SOA) particles , 2010 .

[78]  J. Burkholder,et al.  Rate coefficients for the OH + pinonaldehyde (C10H16O2) reaction between 297 and 374 K. , 2007, Environmental science & technology.

[79]  R. G. Beaman Relation between (apparent) second-order transition temperature and melting point , 1952 .

[80]  A. Laskin,et al.  Photolytic processing of secondary organic aerosols dissolved in cloud droplets. , 2011, Physical chemistry chemical physics : PCCP.

[81]  K. D. Young,et al.  Glass Transition Behavior in a Peat Humic Acid and an Aquatic Fulvic Acid , 2000 .

[82]  Evert Ljungström,et al.  Atmospheric fate of carbonyl oxidation products originating from α-pinene and Δ3-carene : Determination of rate of reaction with OH and NO3 radicals, UV absorption cross sections, and vapor pressures , 1997 .

[83]  A. Lesikar On the glass transition in mixtures between the normal alcohols and various Lewis bases , 1977 .

[84]  W. Kauzmann The Nature of the Glassy State and the Behavior of Liquids at Low Temperatures. , 1948 .

[85]  Allen L. Robinson,et al.  A two-dimensional volatility basis set: 1. organic-aerosol mixing thermodynamics , 2010 .

[86]  C. Angell,et al.  Thermodynamic aspects of the glass transition phenomenon. II. Molecular liquids with variable interactions , 1999 .

[87]  B. Luo,et al.  Heterogeneous Ice Nucleation Rate Coefficient of Water Droplets Coated by a Nonadecanol Monolayer , 2007 .

[88]  M. Le Meste,et al.  Towards an improved understanding of glass transition and relaxations in foods: molecular mobility in the glass transition range , 2000 .

[89]  I. Katkov,et al.  Prediction of the glass transition temperature of water solutions: comparison of different models. , 2004, Cryobiology.

[90]  Louise Slade,et al.  Water and the glass transition — Dependence of the glass transition on composition and chemical structure: Special implications for flour functionality in cookie baking , 1994 .

[91]  J. Kokini,et al.  Dynamic Viscoelastic Properties of Foods in Texture Control , 1983 .

[92]  J. Faucher,et al.  Glass transitions of organic compounds. III. Cellulose substrate technique and aliphatic alcohols , 1979 .

[93]  Giuseppe A. Petrucci,et al.  The oleic acid-ozone heterogeneous reaction system : products , kinetics , secondary chemistry , and atmospheric implications of a model system – a review , 2007 .

[94]  A. Goldstein,et al.  Known and Unexplored Organic Constituents in the Earth's Atmosphere , 2007 .

[95]  J. Jimenez,et al.  Mass spectral characterization of submicron biogenic organic particles in the Amazon Basin , 2009 .

[96]  Claudia Marcolli,et al.  Do atmospheric aerosols form glasses , 2008 .

[97]  S. Sakka,et al.  Relation between apparent glass transition temperature and liquids temperature for inorganic glasses , 1971 .

[98]  R. Parker,et al.  Diffusion in maltose-water mixtures at temperatures close to the glass transition , 1995 .

[99]  T. Tyliszczak,et al.  Oxygenated interface on biomass burn tar balls determined by single particle scanning transmission X-ray microscopy. , 2007, The journal of physical chemistry. A.

[100]  Peter Spichtinger,et al.  When Dry Air Is Too Humid , 2006, Science.

[101]  P. Claudy,et al.  Vitrification and crystallization in the R(−)1,2-propanediol-S(+)1,2-propanediol system , 1995 .

[102]  P. Herckes,et al.  Aqueous OH oxidation of ambient organic aerosol and cloud water organics: Formation of highly oxidized products , 2011 .

[103]  M. Eusébio,et al.  Glass-forming ability of butanediol isomers , 2010 .

[104]  U. Baltensperger,et al.  Identification of Polymers as Major Components of Atmospheric Organic Aerosols , 2004, Science.

[105]  Thomas Koop,et al.  Homogeneous Ice Nucleation in Water and Aqueous Solutions , 2004 .

[106]  Ulrich Pöschl,et al.  Calibration and measurement uncertainties of a continuous-flow cloud condensation nuclei counter (DMT-CCNC): CCN activation of ammonium sulfate and sodium chloride aerosol particles in theory and experiment , 2007 .

[107]  Benjamin J. Murray,et al.  Inhibition of ice crystallisation in highly viscous aqueous organic acid droplets , 2008 .

[108]  P. Couchman Compositional Variation of Glass-Transition Temperatures. 2. Application of the Thermodynamic Theory to Compatible Polymer Blends , 1978 .

[109]  U. Pöschl,et al.  The role of long-lived reactive oxygen intermediates in the reaction of ozone with aerosol particles. , 2011, Nature chemistry.

[110]  C. C. Seow,et al.  Plasticizing-Antiplasticizing Effects of Water on Physical Properties of Tapioca Starch Films in the Glassy State , 2000 .

[111]  D. R. Worsnop,et al.  Evolution of Organic Aerosols in the Atmosphere , 2009, Science.

[112]  Ulrich Pöschl,et al.  Gas uptake and chemical aging of semisolid organic aerosol particles , 2011, Proceedings of the National Academy of Sciences.

[113]  A. Zelenyuk,et al.  Morphology of mixed primary and secondary organic particles and the adsorption of spectator organic gases during aerosol formation , 2010, Proceedings of the National Academy of Sciences.

[114]  L. Bachmann,et al.  Liquid-like relaxation in hyperquenched water at < or = 140 K. , 2005, Physical chemistry chemical physics : PCCP.

[115]  R. Schwarzenbach,et al.  Sorption of a diverse set of organic vapors to urban aerosols. , 2005, Environmental science & technology.

[116]  J. Wisniak,et al.  Osmotic and activity coefficients of HO2CCH2C(OH)(CO2H)CH2CO2H (citric acid) in concentrated aqueous solutions at temperatures from 298.15 K to 318.15 K , 1995 .

[117]  Bernd Kärcher,et al.  Atmospheric Chemistry and Physics The role of organic aerosols in homogeneous ice formation , 2005 .

[118]  Athanasios Nenes,et al.  Sensitivity of the global distribution of cirrus ice crystal concentration to heterogeneous freezing , 2010 .

[119]  Peter A. Crozier,et al.  Brown Carbon Spheres in East Asian Outflow and Their Optical Properties , 2008, Science.

[120]  F. E. Karasz,et al.  A Classical Thermodynamic Discussion of the Effect of Composition on Glass-Transition Temperatures , 1978 .

[121]  N. Okui Relationships between melting temperature, maximum crystallization temperature and glass transition temperature , 1990 .

[122]  U. Pöschl,et al.  Rainforest Aerosols as Biogenic Nuclei of Clouds and Precipitation in the Amazon , 2010, Science.

[123]  Ulrich Pöschl,et al.  An amorphous solid state of biogenic secondary organic aerosol particles , 2010, Nature.

[124]  M. Facchini,et al.  Cloud albedo enhancement by surface-active organic solutes in growing droplets , 1999, Nature.

[125]  Li-Min Wang,et al.  Glass transition dynamics and boiling temperatures of molecular liquids and their isomers. , 2007, The journal of physical chemistry. B.

[126]  P. Flory,et al.  Viscosity—Molecular Weight and Viscosity—Temperature Relationships for Polystyrene and Polyisobutylene1,2 , 1948 .

[127]  U. Pöschl,et al.  University of Birmingham Chemical ageing and transformation of diffusivity in semi-solid multi-component organic aerosol particles , 2011 .

[128]  Sonia M. Kreidenweis,et al.  Cloud droplet activation of secondary organic aerosol , 2007 .

[129]  Volker Ebert,et al.  The effect of organic coating on the heterogeneous ice nucleation efficiency of mineral dust aerosols , 2008 .

[130]  C. Cappa Evolution of organic aerosol mass spectra upon heating: implications for OA phase and partitioning behavior , 2010 .

[131]  James S. Taylor,et al.  Ideal copolymers and the second‐order transitions of synthetic rubbers. i. non‐crystalline copolymers , 2007 .

[132]  P. Palmer,et al.  Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature) , 2006 .

[133]  Erik Swietlicki,et al.  Organic aerosol and global climate modelling: a review , 2004 .

[134]  R. Vautard,et al.  Atmospheric composition change – global and regional air quality , 2009 .

[135]  A. Bertram,et al.  Reactive uptake of O3 by multicomponent and multiphase mixtures containing oleic acid. , 2005, The journal of physical chemistry. A.

[136]  J. Wisniak,et al.  The vapour pressure of water over saturated aqueous solutions of malic, tartaric, and citric acids, at temperatures from 288 K to 323 K , 1995 .

[137]  T. Koop,et al.  Ice nucleation in aqueous solutions of poly[ethylene glycol] with different molar mass , 2003 .

[138]  P. Buseck,et al.  Atmospheric tar balls: Particles from biomass and biofuel burning , 2003 .

[139]  J. Jimenez,et al.  A simplified description of the evolution of organic aerosol composition in the atmosphere , 2010 .

[140]  Qi Zhang,et al.  O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry. , 2008, Environmental science & technology.

[141]  C E Kolb,et al.  Guest Editor: Albert Viggiano CHEMICAL AND MICROPHYSICAL CHARACTERIZATION OF AMBIENT AEROSOLS WITH THE AERODYNE AEROSOL MASS SPECTROMETER , 2022 .

[142]  H. Tenhu,et al.  A Raman spectroscopic and differential scanning calorimetric study of the different crystalline phases of guaiacol , 1990 .

[143]  D. V. Krevelen,et al.  Prediction of the glass transition temperature of polymers , 1970 .