Nanobiotechnology: the fabrication and applications of chemical and biological nanostructures.

Biology can teach the physical world of electronics, computing, materials science and manufacturing how to assemble complex functional devices and systems that operate at the molecular level. Our present capability to fabricate simple molecular tools, devices, materials and machines is primitive compared with the sophistication of nature. Nevertheless, the nanomanufacturing of 'biomimetic' devices is moving ahead strongly. Recent developments have been made in the use of biological systems in molecular self-assembly, spatial positioning, microconstruction, biocomposite fabrication, nanomachines and biocomputing.

[1]  G. Whitesides,et al.  Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. , 1991, Science.

[2]  Jonathan M. Cooper,et al.  Characterization of electron transfer reactions of microperoxidase assembled at short-chain thiol-monolayers on gold , 1997 .

[3]  Viola Vogel,et al.  Molecular shuttles: directed motion of microtubules along nanoscale kinesin tracks , 1999 .

[4]  D C Cullen,et al.  Covalent coupling of immunoglobulin G to a poly(vinyl)alcohol-poly(acrylic acid) graft polymer as a method for fabricating the interfacial-recognition layer of a surface plasmon resonance immunosensor. , 1998, Biosensors & bioelectronics.

[5]  N. Seeman,et al.  A nanomechanical device based on the B–Z transition of DNA , 1999, Nature.

[6]  M. Liley,et al.  Immobilization of histidine-tagged proteins on gold surfaces using chelator thioalkanes. , 1999, Biosensors & bioelectronics.

[7]  D. Odde,et al.  Laser-guided direct writing for applications in biotechnology. , 1999, Trends in biotechnology.

[8]  A. W. Flounders,et al.  Patterning of immobilized antibody layers via photolithography and oxygen plasma exposure. , 1997, Biosensors & bioelectronics.

[9]  Poul Nissen,et al.  Placement of protein and RNA structures into a 5 Å-resolution map of the 50S ribosomal subunit , 1999, Nature.

[10]  P. Morales,et al.  A laser assisted deposition technique suitable for the fabrication of biosensors and molecular electronic devices. , 1995, Biosensors & bioelectronics.

[11]  Oliver P. Ernst,et al.  Micropatterned immobilization of a G protein–coupled receptor and direct detection of G protein activation , 1999, Nature Biotechnology.

[12]  Trevor Douglas,et al.  Host–guest encapsulation of materials by assembled virus protein cages , 1998, Nature.

[13]  George M. Whitesides,et al.  Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer , 1998, Nature.

[14]  A. Mehta,et al.  Single-molecule biomechanics with optical methods. , 1999, Science.

[15]  J. Clendenning,et al.  Construction of biosensors using a gold-binding polypeptide and a miniature integrated surface plasmon resonance sensor. , 1998, Biosensors & bioelectronics.

[16]  George M. Whitesides,et al.  Controlling local disorder in self-assembled monolayers by patterning the topography of their metallic supports , 1998, Nature.

[17]  N C Seeman,et al.  Three-arm nucleic acid junctions are flexible. , 1986, Nucleic acids research.

[18]  Á. Molina,et al.  Reverse differential pulse voltammetry and polarography , 1995 .

[19]  Hao Yan,et al.  New motifs in DNA nanotechnology , 1998 .

[20]  W. Bae,et al.  Biomolecularly capped uniformly sized nanocrystalline materials: Glutathione-capped ZnS nanocrystals , 1999 .

[21]  M. Sarikaya Biomimetics: materials fabrication through biology. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[22]  G. Whitesides,et al.  Patterning ligands on reactive SAMs by microcontact printing , 1999 .

[23]  G. Agarwal,et al.  Laser-assisted deposition of bacteriorhodhopsin assemblies , 1999 .

[24]  Dietmar Pum,et al.  The application of bacterial S-layers in molecular nanotechnology , 1999 .

[25]  N. Seeman,et al.  Assembly of Borromean rings from DNA , 1997, Nature.

[26]  N. Seeman,et al.  Design and self-assembly of two-dimensional DNA crystals , 1998, Nature.

[27]  M. Holwill,et al.  Axonemal dynein - a natural molecular motor , 1999 .

[28]  R. Tukey,et al.  Expression and Functional Domains of Rabbit Liver UDP-glucuronosyltransferase 2B16 and 2B13* , 1997, The Journal of Biological Chemistry.

[29]  S. Santucci,et al.  A laser-assisted deposition technique suitable for the fabrication of biosensors and molecular electronic devices , 1995 .

[30]  Hiroyasu Itoh,et al.  Tying a molecular knot with optical tweezers , 1999, Nature.

[31]  V. Ramakrishnan,et al.  Structure of a bacterial 30S ribosomal subunit at 5.5 Å resolution , 1999, Nature.

[32]  N. Seeman Nucleic acid junctions and lattices. , 1982, Journal of theoretical biology.

[33]  L M Adleman,et al.  Molecular computation of solutions to combinatorial problems. , 1994, Science.

[34]  G. Stucky,et al.  Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[35]  A G Leslie,et al.  Molecular architecture of the rotary motor in ATP synthase. , 1999, Science.

[36]  J C Cox,et al.  The complexities of DNA computation. , 1999, Trends in biotechnology.

[37]  G. Agarwal,et al.  Laser-assisted deposition of preformed mesoscopic systems , 1998 .

[38]  You,et al.  Progress in the application of scanning probe microscopy to biology. , 1996, Current opinion in biotechnology.

[39]  G. Stucky,et al.  Efficient Catalysis of Polysiloxane Synthesis by Silicatein α Requires Specific Hydroxy and Imidazole Functionalities. , 1999, Angewandte Chemie.

[40]  Jacques Lefebvre,et al.  SINGLE-WALL CARBON NANOTUBE CIRCUITS ASSEMBLED WITH AN ATOMIC FORCE MICROSCOPE , 1999 .

[41]  P. Hansma,et al.  Molecular Cloning and Characterization of Lustrin A, a Matrix Protein from Shell and Pearl Nacre of Haliotis rufescens * , 1997, The Journal of Biological Chemistry.

[42]  E. Braun,et al.  DNA-templated assembly and electrode attachment of a conducting silver wire , 1998, Nature.

[43]  H. You,et al.  Covalent coupling of immunoglobulin G to self-assembled monolayers as a method for immobilizing the interfacial-recognition layer of a surface plasmon resonance immunosensor. , 1998, Biosensors & bioelectronics.

[44]  George M. Whitesides,et al.  Patterning self-assembled monolayers using microcontact printing: A new technology for biosensors? , 1995 .

[45]  G. Agarwal,et al.  Laser assisted deposition of supramolecular organizates on solid surfaces , 1998 .

[46]  N. Seeman,et al.  Construction of a DNA-Truncated Octahedron , 1994 .

[47]  Claudio Nicolini,et al.  Towards a light-addressable transducer bacteriorhodopsin based , 1998 .

[48]  Z. Diénès,et al.  Incorporation of rhodopsin in laterally structured supported membranes: observation of transducin activation with spatially and time-resolved surface plasmon resonance. , 1998, Biochemistry.

[49]  Combinatorial Approaches to Peptide-Encapsulated CdS Nanoclusters , 1999 .

[50]  Neocles B. Leontis,et al.  Bulged 3-arm DNA branched junctions as components for nanoconstruction , 1994 .

[51]  Kazuhiko Kinosita,et al.  Direct observation of the rotation of F1-ATPase , 1997, Nature.

[52]  Hongjie Dai,et al.  Exploiting the properties of carbon nanotubes for nanolithography , 1998 .

[53]  George M. Whitesides,et al.  Control of crystal nucleation by patterned self-assembled monolayers , 1999, Nature.

[54]  N. Dontha,et al.  Generation of biotin/avidin/enzyme nanostructures with maskless photolithography. , 1997, Analytical chemistry.

[55]  G. Stucky,et al.  Silicatein α: Cathepsin L-like protein in sponge biosilica , 1998 .

[56]  E Olsson,et al.  Silver-based crystalline nanoparticles, microbially fabricated. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[57]  K. Hirose,et al.  Congruent docking of dimeric kinesin and ncd into three-dimensional electron cryomicroscopy maps of microtubule-motor ADP complexes. , 1999, Molecular biology of the cell.

[58]  Charles M. Lieber,et al.  DIRECT GROWTH OF SINGLE-WALLED CARBON NANOTUBE SCANNING PROBE MICROSCOPY TIPS , 1999 .

[59]  K. Drexler,et al.  Building molecular machine systems , 1999 .

[60]  Peter G. Schultz,et al.  A Strategy for the Chemical Synthesis of Nanostructures , 1995, Science.

[61]  Mario Viani,et al.  Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites , 1999, Nature.

[62]  J. Storhoff,et al.  A DNA-based method for rationally assembling nanoparticles into macroscopic materials , 1996, Nature.

[63]  W. Junge,et al.  Intersubunit rotation in active F-ATPase , 1996, Nature.

[64]  D. Morse Silicon biotechnology: harnessing biological silica production to construct new materials , 1999 .

[65]  T. Earnest,et al.  X-ray crystal structures of 70S ribosome functional complexes. , 1999, Science.

[66]  W F Heinz,et al.  Spatially resolved force spectroscopy of biological surfaces using the atomic force microscope. , 1999, Trends in biotechnology.

[67]  Carlo D. Montemagno,et al.  Constructing nanomechanical devices powered by biomolecular motors , 1999 .

[68]  Merkle,et al.  Biotechnology as a route to nanotechnology , 1999, Trends in biotechnology.

[69]  Xu,et al.  "Dip-Pen" nanolithography , 1999, Science.

[70]  X. H. Wu,et al.  Control of crystal phase switching and orientation by soluble mollusc-shell proteins , 1996, Nature.

[71]  R. Gordon,et al.  Beyond micromachining: the potential of diatoms. , 1999, Trends in biotechnology.