Development of Discrete Cracks in Concrete Loaded by Shock Waves

The non-linear behaviour of statically loaded concrete results mainly from the development of cracks. In addition, highly dynamically loaded concrete is influenced by the failure of micro-pores. Several authors use a damage model to consider both effects. The objective of this work is to test the capability of a discrete crack model to simulate shock wave-loaded concrete. Discrete cracks are modelled using the element-free Galerkin method, which allows cracks to be implemented independently of the mesh. The discrete crack model is used in combination with a fracture process zone to simulate the cohesive behaviour of the cracks in concrete. The behaviour of the micro-pores is described by a compression modulus, which depends on hydrostatic strain (Hugoniot curve). The strain rate effect is considered by modifying the failure surface for calculating crack development. Static and dynamic benchmarks with several concrete beams show good agreement with experimental results. Experiments with concrete loaded by contact detonation show the development of cracks below the crater. The simulation model used shows good agreement with the experimental crack pattern.

[1]  K. Thoma,et al.  Spall experiments for the measurement of the tensile strength and fracture energy of concrete at high strain rates , 2006 .

[2]  João Folgado,et al.  III European Conference on Computational Mechanics , 2006 .

[3]  James E. Beavers,et al.  Response of Deep Two-Way-Reinforced and Unreinforced Concrete Slabs to Static and Dynamic Loading, Report 3: Static Tests of Deep Slabs Having a Span-to-Thickness Ratio of 4.12 , 1969 .

[4]  B. K. Raghu Prasad,et al.  Fracture Mechanics Model for Analysis of Plain and Reinforced High-Performance Concrete Beams , 2005 .

[5]  H. Saunders Book Reviews : NUMERICAL METHODS IN FINITE ELEMENT ANALYSIS K.-J. Bathe and E.L. Wilson Prentice-Hall, Inc, Englewood Cliffs, NJ , 1978 .

[6]  N. S. Ottosen A Failure Criterion for Concrete , 1977 .

[7]  Ted Belytschko,et al.  A method for dynamic crack and shear band propagation with phantom nodes , 2006 .

[8]  T. Rabczuk,et al.  A Meshfree Method based on the Local Partition of Unity for Cohesive Cracks , 2007 .

[9]  M. Ortiz,et al.  Computational modelling of impact damage in brittle materials , 1996 .

[10]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[11]  N. Gebbeken,et al.  Simulation Of Concrete Structures Under HighlyDynamic Loadings , 2000 .

[12]  R. M. Zimmerman,et al.  Compressive Strength of Plain Concrete Under Multiaxial Loading Conditions , 1970 .

[13]  Comité euro-international du béton,et al.  Concrete structures under impact and impulsive loading : RILEM-CEB-IABSE-IASS--interassociation symposium : Berlin (West), June 2-4, 1982 : introductory report , 1982 .

[14]  Ted Belytschko,et al.  A vector level set method and new discontinuity approximations for crack growth by EFG , 2002 .

[15]  K. Bathe Finite Element Procedures , 1995 .

[16]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[17]  S. H. Perry,et al.  Compressive behaviour of concrete at high strain rates , 1991 .

[18]  N. Gebbeken,et al.  A new material model for concrete in high-dynamic hydrocode simulations , 2000 .

[19]  Kurt H. Gerstle,et al.  Behavior of Concrete Under Biaxial Stresses , 1969 .

[20]  L. E. Malvern Plastic wave propagation in a bar of material exhibiting a strain rate effect , 1951 .

[21]  Ted Belytschko,et al.  Cracking particles: a simplified meshfree method for arbitrary evolving cracks , 2004 .

[22]  Josef Eibl,et al.  Crack velocity in concrete , 1990 .

[23]  T. Belytschko,et al.  Non‐planar 3D crack growth by the extended finite element and level sets—Part II: Level set update , 2002 .

[24]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[25]  Joseph W. Tedesco,et al.  A strain-rate-dependent concrete material model for ADINA , 1997 .

[26]  Josef Eibl,et al.  Experiments on concrete under shock loading , 2002 .

[27]  Jörn Mosler,et al.  Embedded crack vs. smeared crack models: a comparison of elementwise discontinuous crack path approaches with emphasis on mesh bias , 2004 .

[28]  Albert S. Kobayashi,et al.  Fracture Process Zone for Concrete for Dynamic Loading , 1992 .

[29]  J. Weerheijm,et al.  Device for testing concrete under impact tensile loading and lateral compression , 1991 .

[30]  S H Perry,et al.  Impact Behavior of Plain Concrete Loaded in Uniaxial Compression , 1995 .

[31]  T. Belytschko,et al.  A comparative study on finite element methods for dynamic fracture , 2008 .

[32]  Ted Belytschko,et al.  Stability Analysis of Particle Methods with Corrected Derivatives , 2002 .

[33]  A. Hillerborg,et al.  Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements , 1976 .

[34]  Julien Réthoré,et al.  Efficient explicit time stepping for the eXtended Finite Element Method (X‐FEM) , 2006 .

[35]  Edward C. Ting,et al.  An Elastic-Fracture Model for Concrete , 1979 .

[36]  T. Rabczuk,et al.  Simulation of high velocity concrete fragmentation using SPH/MLSPH , 2003 .

[37]  Björn Schmidt-Hurtienne Ein dreiaxiales Schädigungsmodell für Beton unter Einschluss des Dehnrateneffekts bei Hochgeschwindigkeitsbelastung , 2001 .

[38]  T. Belytschko,et al.  Nodal integration of the element-free Galerkin method , 1996 .

[39]  T. Belytschko,et al.  Stable particle methods based on Lagrangian kernels , 2004 .

[40]  L. Malvar,et al.  A PLASTICITY CONCRETE MATERIAL MODEL FOR DYNA3D , 1997 .

[41]  T. Belytschko,et al.  A three dimensional large deformation meshfree method for arbitrary evolving cracks , 2007 .

[42]  Hans W. Reinhardt,et al.  Joint investigation of concrete at high rates of loading , 1990 .

[43]  Ted Belytschko,et al.  Element-free Galerkin method for wave propagation and dynamic fracture , 1995 .

[44]  W. Herrmann Constitutive Equation for the Dynamic Compaction of Ductile Porous Materials , 1969 .