Demonstration of a scalable frequency-domain readout of metallic magnetic calorimeters by means of a microwave SQUID multiplexer

We report on the first demonstration of a scalable GHz frequency-domain readout of metallic magnetic calorimeters (MMCs) using a 64 pixel detector array that is read out by an integrated, on-chip microwave SQUID multiplexer. The detector array is optimized for detecting soft X-ray photons and the multiplexer is designed to provide a signal rise time τrise<400ns and an intrinsic energy sensitivity ϵ<30h. This results in an expected energy resolution ΔEFWHM<10eV. We measured a signal rise time τrise as low as 90ns and an energy resolution ΔEFWHM as low as 50eV for 5.9keV photons. The rise time is about an order of magnitude faster compared to other multiplexed low-temperature microcalorimeters and close to the intrinsic value set by the coupling between electron and spins. The energy resolution is degraded with respect to our design value due to a rather low intrinsic quality factor of the microwave resonators that is caused by the quality of the Josephson junction of the associated rf-SQUID as well as an e...

[1]  Jonas Zmuidzinas,et al.  Experimental evidence for a surface distribution of two-level systems in superconducting lithographed microwave resonators , 2008, 0802.4457.

[2]  C. Enss,et al.  Development of cryogenic alpha spectrometers using metallic magnetic calorimeters , 2011 .

[3]  C. Enss,et al.  Characterization of the reliability and uniformity of an anodization-free fabrication process for high-quality Nb/Al–AlOx/Nb Josephson junctions , 2013 .

[4]  M. Loidl,et al.  The First Tests of a Large-Area Light Detector Equipped with Metallic Magnetic Calorimeters for Scintillating Bolometers for the LUMINEU Neutrinoless Double Beta Decay Search , 2016 .

[5]  D. Lacour,et al.  Metallic Magnetic Calorimeters for Absolute Activity Measurement , 2008 .

[6]  Kent D. Irwin,et al.  Microwave SQUID multiplexer , 2004 .

[7]  D. Lacour,et al.  First measurement of the beta spectrum of 241Pu with a cryogenic detector. , 2010, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[8]  Benjamin A. Mazin,et al.  Microwave Kinetic Inductance Detectors: The First Decade , 2009 .

[9]  M. Loidl,et al.  Evidence for the Exchange Effect Down to Very Low Energy in the Beta Decays of 63\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{ , 2014, Journal of Low Temperature Physics.

[10]  Coenrad J. Fourie,et al.  Three-dimensional multi-terminal superconductive integrated circuit inductance extraction , 2011 .

[11]  Kent D. Irwin,et al.  Flux-Ramp Modulation for SQUID Multiplexing , 2012 .

[12]  W. B. Doriese,et al.  Microwave SQUID multiplexers for low-temperature detectors , 2006 .

[13]  M. Linck,et al.  Beta Spectrometry with Magnetic Calorimeters , 2008 .

[14]  S. Friedrich,et al.  Reproducibility and calibration of MMC-based high-resolution gamma detectors , 2016 .

[15]  C. Enss,et al.  Cryogenic micro-calorimeters for mass spectrometric identification of neutral molecules and molecular fragments , 2015, 1505.07222.

[16]  C. Enss,et al.  Towards FAIR: first measurements of metallic magnetic calorimeters for high-resolution x-ray spectroscopy at GSI , 2015 .

[17]  C. Enss,et al.  Microwave SQUID Multiplexer for the Readout of Metallic Magnetic Calorimeters , 2014 .

[18]  R. Barends,et al.  Contribution of dielectrics to frequency and noise of NbTiN superconducting resonators , 2008, 0804.3499.

[19]  D. A. Vincent,et al.  rf SQUID’s in the nonhysteretic mode: Detailed comparison of theory and experiment , 1976 .

[20]  K. Irwin,et al.  Evaluation of a Microwave SQUID Multiplexer Prototype , 2007, IEEE Transactions on Applied Superconductivity.

[21]  T. Schumm,et al.  Prospects for measuring the 229Th isomer energy using a metallic magnetic microcalorimeter☆ , 2013, Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment.

[22]  S. Friedrich,et al.  Development of MMC Gamma Detectors for Nuclear Analysis , 2013 .

[23]  Kent D. Irwin,et al.  Shannon Limits for Low‐Temperature Detector Readout , 2009 .

[24]  K. Irwin,et al.  Magnetically Coupled Microcalorimeters , 2012 .

[25]  Jonas Zmuidzinas,et al.  Noise properties of superconducting coplanar waveguide microwave resonators , 2006, cond-mat/0609614.

[26]  M. Loidl,et al.  Concept of Metallic Magnetic Calorimeters for Rare Event Search in the LUMINEU Project , 2014 .

[27]  S. Schäfer,et al.  maXs: Microcalorimeter Arrays for High-Resolution X-Ray Spectroscopy at GSI/FAIR , 2012 .

[28]  Kent D. Irwin,et al.  Demonstration of a multiplexer of dissipationless superconducting quantum interference devices , 2008 .

[29]  T. Stevenson,et al.  Time Domain Multiplexed Readout of Magnetically Coupled Calorimeters , 2013, IEEE Transactions on Applied Superconductivity.

[30]  Kent D. Irwin,et al.  SQUID multiplexers for transition-edge sensors , 2002 .

[31]  Jonas Zmuidzinas,et al.  Superconducting Microresonators: Physics and Applications , 2012 .

[32]  Paul K. Hansma,et al.  Superconducting single‐junction interferometers with small critical currents , 1973 .

[33]  Erich N. Grossman,et al.  Time-division SQUID multiplexers , 2002 .