A note on numerical ranges of tensors

Theory of numerical range and numerical radius for tensors is not studied much in the literature. In 2016, Ke et al. [Linear Algebra Appl., 508 (2016) 100-132] introduced first the notion of numerical range of a tensor via the k-mode product. However, the convexity of the numerical range via the k-mode product was not proved by them. In this paper, the notion of numerical range and numerical radius for even-order square tensors using inner product via the Einstein product are introduced first. We provide some sufficient conditions using numerical radius for a tensor to being unitary. The convexity of the numerical range is also proved. We also provide an algorithm to plot the numerical range of a tensor. Furthermore, some properties of the numerical range for the Moore–Penrose inverse of a tensor are discussed.

[1]  Michael K. Ng,et al.  Numerical ranges of tensors , 2016 .

[2]  C. Pearcy An elementary proof of the power inequality for the numerical radius. , 1966 .

[3]  Miroslav Fiedler,et al.  Numerical range of matrices and Levinger's theorem , 1995 .

[4]  S. H. Cheng,et al.  The nearest definite pair for the Hermitian generalized eigenvalue problem , 1999 .

[5]  M. Tsatsomeros,et al.  On the Stability Radius of Matrix Polynomials , 2002 .

[6]  A. Einstein The Foundation of the General Theory of Relativity , 1916 .

[7]  Krushnachandra Panigrahy,et al.  Extension of Moore–Penrose inverse of tensor via Einstein product , 2018, Linear and Multilinear Algebra.

[8]  O. Axelsson,et al.  On the numerical radius of matrices and its application to iterative solution methods , 1994 .

[9]  M. Ćirić,et al.  Outer and (b,c) inverses of tensors , 2018, Linear and Multilinear Algebra.

[10]  Na Li,et al.  Solving Multilinear Systems via Tensor Inversion , 2013, SIAM J. Matrix Anal. Appl..

[11]  Changjiang Bu,et al.  Moore–Penrose inverse of tensors via Einstein product , 2016 .

[12]  E. Tadmor,et al.  On the Numerical Radius and Its Applications , 1982 .

[13]  F. Bonsall,et al.  Numerical Ranges II , 1973 .

[14]  John Maroulas,et al.  Perron–Frobenius type results on the numerical range , 2002 .

[15]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[16]  Michael Eiermann,et al.  Fields of values and iterative methods , 1993 .

[17]  David Rubin,et al.  Introduction to Continuum Mechanics , 2009 .

[18]  Bing Zheng,et al.  Further results on Moore-Penrose inverses of tensors with application to tensor nearness problems , 2019, Comput. Math. Appl..

[19]  F. Smithies A HILBERT SPACE PROBLEM BOOK , 1968 .

[20]  Mehri Pakmanesh,et al.  Numerical ranges of even-order tensor , 2021, Banach Journal of Mathematical Analysis.

[21]  Baohua Huang,et al.  Numerical subspace algorithms for solving the tensor equations involving Einstein product , 2020, Numer. Linear Algebra Appl..

[22]  B. Zheng,et al.  Tensor inversion and its application to the tensor equations with Einstein product , 2018, Linear and Multilinear Algebra.

[23]  S. Kirkland,et al.  On the location of the spectrum of hypertournament matrices , 2001 .

[24]  Debasisha Mishra,et al.  Further results on generalized inverses of tensors via the Einstein product , 2016, 1604.02675.