Additive Hazards Regression Models for Survival Data

The additive hazards regression model relates the conditional hazard function of the failure time linearly to the covariates. This formulation complements the familiar proportional hazards model in that it describes the association between the covariates and failure time in terms of the risk difference rather than the risk ratio. In this paper, we provide a closed-form semiparametric estimator for the (vector-valued) regression parameter of the additive hazards model with right-censored data, which is consistent and asymptotically normal with a simple variance estimator. We also demonstrate how the additive hazards framework can be used effectively to incorporate frailty and to handle interval-censored data, the resulting semiparametric inference procedures being much simpler than their counterparts under the proportional hazards framework.

[1]  D. Harrington,et al.  Counting Processes and Survival Analysis , 1991 .

[2]  Lee-Jen Wei,et al.  Cox-Type Regression Analysis for Large Numbers of Small Groups of Correlated Failure Time Observations , 1992 .

[3]  N. Breslow,et al.  Statistical methods in cancer research. Volume II--The design and analysis of cohort studies. , 1987, IARC scientific publications.

[4]  N. Breslow,et al.  Cohort Analysis in Epidemiology , 1985 .

[5]  A. Rogers,et al.  Multidimensional Mathematical Demography , 1982 .

[6]  Ian W. McKeague,et al.  Weighted Least Squares Estimation for Aalen's Additive Risk Model , 1991 .

[7]  Steven G. Self,et al.  Asymptotic Distribution Theory for Cox-Type Regression Models with General Relative Risk Form , 1983 .

[8]  B. Turnbull The Empirical Distribution Function with Arbitrarily Grouped, Censored, and Truncated Data , 1976 .

[9]  Philip Hougaard,et al.  Modelling multivariate survival , 1987 .

[10]  R. Spady,et al.  AN EFFICIENT SEMIPARAMETRIC ESTIMATOR FOR BINARY RESPONSE MODELS , 1993 .

[11]  Niels Keiding,et al.  Statistical Models Based on Counting Processes , 1993 .

[12]  Zhiliang Ying,et al.  Semiparametric Analysis of General Additive-Multiplicative Hazard Models for Counting Processes , 1995 .

[13]  Richard D. Gill,et al.  A counting process approach to maximum likelihood estimation in frailty models , 1992 .

[14]  Anastasios A. Tsiatis,et al.  Regression with interval-censored data , 1995 .

[15]  F. J. Aranda-Ordaz An extension of the proportional-hazards model for grouped data. , 1983, Biometrics.

[16]  Susan A. Murphy,et al.  Asymptotic Theory for the Frailty Model , 1995 .

[17]  David R. Cox,et al.  Regression models and life tables (with discussion , 1972 .

[18]  O. Aalen A linear regression model for the analysis of life times. , 1989, Statistics in medicine.

[19]  N. Breslow,et al.  Statistical methods in cancer research: volume 1- The analysis of case-control studies , 1980 .

[20]  R. Gill,et al.  Cox's regression model for counting processes: a large sample study : (preprint) , 1982 .

[21]  Related Topics,et al.  Survival analysis : state of the art , 1992 .

[22]  Norman E. Breslow,et al.  The design and analysis of cohort studies , 1987 .

[23]  Jian Huang,et al.  Efficient estimation for the proportional hazards model with interval censoring , 1996 .

[24]  D. Cox,et al.  Analysis of Survival Data. , 1985 .

[25]  D. Clayton,et al.  Multivariate generalizations of the proportional hazards model , 1985 .

[26]  N. E. Breslow Statistical Methods in Cancer Research , 1986 .

[27]  Odd Aalen,et al.  A Model for Nonparametric Regression Analysis of Counting Processes , 1980 .

[28]  R. G. Cornell,et al.  Modern Statistical Methods in Chronic Disease Epidemiology. , 1988 .

[29]  L. J. Wei,et al.  Regression analysis of multivariate incomplete failure time data by modeling marginal distributions , 1989 .

[30]  Stephen E. Fienberg,et al.  A Celebration of Statistics , 1985 .

[31]  J. Wellner,et al.  Information Bounds and Nonparametric Maximum Likelihood Estimation , 1992 .

[32]  D. Oakes,et al.  Bivariate survival models induced by frailties , 1989 .

[33]  J. Heckman,et al.  Population heterogeneity in demographic models. , 1982 .

[34]  Zhiliang Ying,et al.  Semiparametric analysis of the additive risk model , 1994 .