X-ray Photoelectron Spectroscopy and Resonant X-ray Spectroscopy Investigations of Interactions between Thin Metal Catalyst Films and Amorphous Titanium Dioxide Photoelectrode Protection Layers

The use of electrochemistry, X-ray photoelectron spectroscopy, and resonant X-ray spectroscopy has unlocked the paradox of interfacial hole conduction through amorphous TiO2 (a-TiO2) to deposited N...

[1]  N. Nagatsuka,et al.  Hydrogenation and hydrogen diffusion at the anatase TiO2(101) surface. , 2020, The Journal of chemical physics.

[2]  C. Xie,et al.  Mechanistic study of N–H- and H–N-codoping of a TiO2 photocatalyst for efficient degradation of benzene under visible light , 2020, RSC advances.

[3]  H. Atwater,et al.  CO2 Reduction to CO with 19% Efficiency in a Solar-Driven Gas Diffusion Electrode Flow Cell under Outdoor Solar Illumination , 2020, ACS Energy Letters.

[4]  R. Singh,et al.  Phase growth analysis of sputtered TiO2 thin films at low oxygen partial pressures using XANES and XRR , 2019, Materials Research Express.

[5]  Brandon D. Piercy,et al.  Characterization of Electronic Transport through Amorphous TiO2 Produced by Atomic Layer Deposition , 2019, The Journal of Physical Chemistry C.

[6]  N. Nagatsuka,et al.  Hydrogen Distribution and Electronic Structure of TiO2(110) Hydrogenated with Low-Energy Hydrogen Ions , 2019, The Journal of Physical Chemistry C.

[7]  Joondong Kim,et al.  Thickness-dependent photoelectrochemical properties of a semitransparent Co3O4 photocathode , 2018, Beilstein journal of nanotechnology.

[8]  W. Jaegermann,et al.  The Work Function of TiO2 , 2018, Surfaces.

[9]  T. Bein,et al.  Electron‐Blocking and Oxygen Evolution Catalyst Layers by Plasma‐Enhanced Atomic Layer Deposition of Nickel Oxide , 2018 .

[10]  Wen-Hui Cheng,et al.  Monolithic Photoelectrochemical Device for Direct Water Splitting with 19% Efficiency , 2017, ACS Energy Letters.

[11]  Zongping Shao,et al.  Two orders of magnitude enhancement in oxygen evolution reactivity on amorphous Ba0.5Sr0.5Co0.8Fe0.2O3−δ nanofilms with tunable oxidation state , 2017, Science Advances.

[12]  Thomas Hannappel,et al.  On the benchmarking of multi-junction photoelectrochemical fuel generating devices , 2017 .

[13]  Katherine T Fountaine,et al.  (Invited) Efficiency Limits for Hydrogen and Formate Production via Fully-Integrated Photoelectrochemical Devices , 2017 .

[14]  Ib Chorkendorff,et al.  Strategies for stable water splitting via protected photoelectrodes. , 2017, Chemical Society reviews.

[15]  Zahid Hussain,et al.  High-efficiency in situ resonant inelastic x-ray scattering (iRIXS) endstation at the Advanced Light Source. , 2017, The Review of scientific instruments.

[16]  Harry A. Atwater,et al.  Efficiency limits for photoelectrochemical water-splitting , 2016, Nature Communications.

[17]  D. Schmeißer,et al.  Electronic properties of atomic layer deposition films, anatase and rutile TiO2 studied by resonant photoemission spectroscopy , 2016 .

[18]  N. Lewis,et al.  Protection of inorganic semiconductors for sustained, efficient photoelectrochemical water oxidation , 2016 .

[19]  Kimberly M. Papadantonakis,et al.  570 mV photovoltage, stabilized n-Si/CoOx heterojunction photoanodes fabricated using atomic layer deposition , 2016 .

[20]  S. Basu,et al.  Hydrogen treated anatase TiO2: a new experimental approach and further insights from theory , 2016 .

[21]  N. Lewis,et al.  Electrical, Photoelectrochemical, and Photoelectron Spectroscopic Investigation of the Interfacial Transport and Energetics of Amorphous TiO2/Si Heterojunctions , 2016 .

[22]  P. Bugnon,et al.  Electron-Phonon Coupling in the Bulk of Anatase TiO2 Measured by Resonant Inelastic X-Ray Spectroscopy. , 2015, Physical review letters.

[23]  N. Lewis,et al.  Direct observation of the energetics at a semiconductor/liquid junction by operando X-ray photoelectron spectroscopy , 2015 .

[24]  Bruce A. Parkinson,et al.  Deep and Shallow TiO2 Gap States on Cleaved Anatase Single Crystal (101) Surfaces, Nanocrystalline Anatase Films, and ALD Titania Ante and Post Annealing , 2015 .

[25]  N. Lewis,et al.  Measurement of the Energy-Band Relations of Stabilized Si Photoanodes Using Operando Ambient Pressure X-ray Photoelectron Spectroscopy , 2015 .

[26]  N. Lewis,et al.  (Invited) Investigation of the Si/TiO2/Electrolyte Interface Using Operando Tender X-ray Photoelectron Spectroscopy , 2015 .

[27]  G. Kotliar,et al.  Physical properties and electronic structure of a new barium titanate suboxide Ba1+δTi13−δO12 (δ = 0.11) , 2015 .

[28]  Charles C. L. McCrory,et al.  Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. , 2015, Journal of the American Chemical Society.

[29]  Kimberly M. Papadantonakis,et al.  Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films , 2015, Proceedings of the National Academy of Sciences.

[30]  Jens K Nørskov,et al.  Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting. , 2015, Journal of the American Chemical Society.

[31]  Lin-wang Wang,et al.  Oxygen vacancy and hole conduction in amorphous TiO2. , 2015, Physical chemistry chemical physics : PCCP.

[32]  N. Lewis,et al.  Stabilization of n-cadmium telluride photoanodes for water oxidation to O2(g) in aqueous alkaline electrolytes using amorphous TiO2 films formed by atomic-layer deposition , 2014 .

[33]  T. Mayer,et al.  Electric potential distributions in space charge regions of molecular organic adsorbates using a simplified distributed states model , 2014 .

[34]  Matthew R. Shaner,et al.  Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation , 2014, Science.

[35]  M. Abbate,et al.  Effects of Ni vacancies and crystallite size on the O 1s and Ni 2p x-ray absorption spectra of nanocrystalline NiO , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[36]  C. Hwang,et al.  Spectroscopic investigation of the hole states in Ni-deficient NiO films , 2013 .

[37]  W. Goddard,et al.  Using Photoelectron Spectroscopy and Quantum Mechanics to Determine d-Band Energies of Metals for Catalytic Applications , 2012 .

[38]  W. Tang,et al.  Transition Metal Oxide Work Functions: The Influence of Cation Oxidation State and Oxygen Vacancies , 2012 .

[39]  Zhenghong Lu,et al.  Effects of Processing Conditions on the Work Function and Energy-Level Alignment of NiO Thin Films , 2010 .

[40]  Z. Hussain,et al.  New ambient pressure photoemission endstation at Advanced Light Source beamline 9.3.2. , 2010, The Review of scientific instruments.

[41]  G. Pacchioni,et al.  Reduced and n-Type Doped TiO2: Nature of Ti3+ Species , 2009 .

[42]  P. Glatzel,et al.  Resonant X-ray spectroscopy to study K absorption pre-edges in 3d transition metal compounds , 2009 .

[43]  B. Hammer,et al.  The Role of Interstitial Sites in the Ti3d Defect State in the Band Gap of Titania , 2008, Science.

[44]  D. Schmeißer,et al.  Deposition of reactive and non-reactive metals on titanium dioxide - Chromium and cobalt , 2008, 2008 International Students and Young Scientists Workshop - Photonics and Microsystems.

[45]  S. Sze,et al.  Physics of Semiconductor Devices: Sze/Physics , 2006 .

[46]  D. Goodman,et al.  MIES and UPS(HeI) studies on reduced TiO2(110) , 2005 .

[47]  D. R. Penn,et al.  Calculations of electron inelastic mean free paths , 2005 .

[48]  B. Weckhuysen,et al.  In Situ X-ray Absorption of Co/Mn/TiO2 Catalysts for Fischer−Tropsch Synthesis , 2004 .

[49]  N. Lewis,et al.  Investigation of the size-scaling behavior of spatially nonuniform barrier height contacts to semiconductor surfaces using ordered nanometer-scale nickel arrays on silicon electrodes , 2001 .

[50]  M. A. Henderson A surface perspective on self-diffusion in rutile TiO2 , 1999 .

[51]  T. Madey,et al.  Ultrathin metal film growth on TiO2(110): an overview , 1995 .

[52]  D. R. Penn,et al.  Calculations of electron inelastic mean free paths. III. Data for 15 inorganic compounds over the 50–2000 eV range , 1991 .

[53]  K. Horn Semiconductor interface studies using core and valence level photoemission , 1990 .

[54]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[55]  H. Michaelson The work function of the elements and its periodicity , 1977 .

[56]  D. Schmeißer,et al.  An (In Situ) 2 Approach: ALD and resPES Applied to Al 2 O 3 , HfO 2 , and TiO 2 Ultrathin Films , 2018 .

[57]  Zongping Shao,et al.  Two orders of magnitude enhancement in oxygen evolution reactivity on amorphous Ba 0 . 5 Sr 0 . 5 Co 0 . 8 Fe 0 . 2 O 3 − d nanofilms with tunable oxidation state , 2017 .

[58]  N. Lewis,et al.  An Electrochemical, Microtopographical and Ambient Pressure X-Ray Photoelectron Spectroscopic Investigation of Si/TiO2/Ni/Electrolyte Interfaces , 2016 .

[59]  D. Schmeißer,et al.  Electronic Properties of the Interface Formed by Pr 2 O 3 Growth on Si(001), Si(111) and SiC(0001) Surfaces , 2005 .

[60]  Ulrike Diebold,et al.  The surface science of titanium dioxide , 2003 .

[61]  Charles T. Campbell,et al.  Ultrathin metal films and particles on oxide surfaces: structural, electronic and chemisorptive properties , 1997 .

[62]  Alfonso Franciosi,et al.  Heterojunction band offset engineering , 1996 .

[63]  工藤 康弘,et al.  Rutile, TiO 2 の結晶構造におよぼす圧力の影響 , 1984 .