Improvement of strapdown inertial navigation using PDAF

A new application of PDAF (probabilistic data association filter) for improving the accuracy of autonomous strapdown inertial navigation systems (SINS) is presented. The proposed method is a terrain-aided navigation (TAN) algorithm based on landmark detection combined with a classical SINS. It is shown via a set of simulations that the method can improve significantly the precision of autonomous navigation if the landmark spatial density and quality of landmark detectors are good enough. This new concept of navigation called PDANF (probabilistic data association navigation filter) can be integrated with a relatively low cost in existing operational TAN systems.

[1]  J. C. Hung,et al.  Application of Statistical Techniques to Landmark Navigation , 1970 .

[2]  J. C. Hung,et al.  Landmark Navigation Rule, a New Navigation Device , 1972, IEEE Transactions on Aerospace and Electronic Systems.

[3]  J. C. Hung,et al.  Two New Landmark Navigation Methods , 1972, IEEE Transactions on Aerospace and Electronic Systems.

[4]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[5]  I. Bar-Itzhack,et al.  Optimal updating of INS using landmarks , 1977 .

[6]  R. J. Milliken,et al.  PRINCIPLE OF OPERATION OF NAVSTAR AND SYSTEM CHARACTERISTICS (GPS SYSTEM DESCRIPTION) , 1978 .

[7]  S. C. Garg,et al.  Strapdown Navigation Technology: A Literature Survey , 1978 .

[8]  H. Moritz Advanced Physical Geodesy , 1980 .

[9]  Paul S. Jorgensen Navstar/Global Positioning System 18‐Satellite Constellations , 1980 .

[10]  C. Draper Origins of inertial navigation , 1981 .

[11]  I. Y. Bar-Itzhack,et al.  Minimal order time sharing filters for INS in-flight alignment , 1982 .

[12]  Wang Tang,et al.  Application of multiple model estimation to a recursive terrain height correlation system , 1983 .

[13]  L. B. Hostetler,et al.  Nonlinear Kalman filtering techniques for terrain-aided navigation , 1983 .

[14]  Paul G Savage,et al.  Strapdown System Algorithms , 1984 .

[15]  Don Torrieri,et al.  Statistical Theory of Passive Location Systems , 1984, IEEE Transactions on Aerospace and Electronic Systems.

[16]  World geodetic system 1984: A modern and accurate global reference frame , 1988 .

[17]  Y. Bar-Shalom Tracking and data association , 1988 .

[18]  D. deDoes,et al.  Integrated Navigation System Design and Performance With Phase III GPS User Equipment , 1988 .

[19]  Ingemar J. Cox,et al.  Autonomous Robot Vehicles , 1990, Springer New York.

[20]  J. Hollowell,et al.  Heli/SITAN: a terrain referenced navigation algorithm for helicopters , 1990, IEEE Symposium on Position Location and Navigation. A Decade of Excellence in the Navigation Sciences.

[21]  I.A. Getting,et al.  Perspective/navigation-The Global Positioning System , 1993, IEEE Spectrum.

[22]  Y. Bar-Shalom,et al.  Joint probabilistic data association for autonomous navigation , 1993 .

[23]  A. Bar-Gill,et al.  Improvement of terrain-aided navigation via trajectory optimization , 1994, IEEE Trans. Control. Syst. Technol..

[24]  J. Zhu,et al.  Conversion of Earth-centered Earth-fixed coordinates to geodetic coordinates , 1994 .

[25]  Dan Simon,et al.  Real-time navigation using the global positioning system , 1995 .

[26]  Yakov Bar-Shalom,et al.  Multitarget-Multisensor Tracking: Principles and Techniques , 1995 .