Classical simulation of dissipative fermionic linear optics
暂无分享,去创建一个
[1] Tomaz Prosen,et al. Spectral theorem for the Lindblad equation for quadratic open fermionic systems , 2010, 1005.0763.
[2] Tomaz Prosen,et al. Quantum phase transition in a far-from-equilibrium steady state of an XY spin chain. , 2008, Physical review letters.
[3] E. Knill,et al. A scheme for efficient quantum computation with linear optics , 2001, Nature.
[4] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[5] P. Recher,et al. Unpaired Majorana fermions in quantum wires , 2001 .
[6] F. Verstraete,et al. Quantum computation and quantum-state engineering driven by dissipation , 2009 .
[7] Tomaz Prosen,et al. Exact solution of Markovian master equations for quadratic Fermi systems: thermal baths, open XY spin chains and non-equilibrium phase transition , 2009, 0910.0195.
[8] Richard Jozsa,et al. Matchgate and space-bounded quantum computations are equivalent , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[9] M. Freedman,et al. Topological Quantum Computation , 2001, quant-ph/0101025.
[10] C. Beenakker,et al. Charge detection enables free-electron quantum computation. , 2004, Physical Review Letters.
[11] Sergey Bravyi,et al. Lagrangian representation for fermionic linear optics , 2004, Quantum Inf. Comput..
[12] Leslie G. Valiant,et al. Quantum computers that can be simulated classically in polynomial time , 2001, STOC '01.
[13] A V Gorshkov,et al. Robust quantum state transfer in random unpolarized spin chains. , 2010, Physical review letters.
[14] P. Zoller,et al. Topology by dissipation in atomic quantum wires , 2011, 1105.5947.
[15] L. Landau. Fault-tolerant quantum computation by anyons , 2003 .
[16] Alexei Kitaev,et al. Anyons in an exactly solved model and beyond , 2005, cond-mat/0506438.
[17] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[18] P. Zoller,et al. A Rydberg quantum simulator , 2009, 0907.1657.
[19] A. Kitaev,et al. Fermionic Quantum Computation , 2000, quant-ph/0003137.
[20] A. Dzhioev,et al. Super-fermion representation of quantum kinetic equations for the electron transport problem. , 2010, The Journal of chemical physics.
[21] A. Kitaev. Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.
[22] R. Feynman. Simulating physics with computers , 1999 .
[23] A V Gorshkov,et al. Topologically protected quantum state transfer in a chiral spin liquid , 2011, Nature Communications.
[24] Emanuel Knill,et al. Fermionic Linear Optics and Matchgates , 2001, ArXiv.
[25] Tomaz Prosen,et al. Third quantization: a general method to solve master equations for quadratic open Fermi systems , 2008, 0801.1257.
[26] R. Jozsa,et al. Matchgates and classical simulation of quantum circuits , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[27] Robert König,et al. Disorder-Assisted Error Correction in Majorana Chains , 2011, 1108.3845.
[28] Stephen P. Jordan,et al. Permutational quantum computing , 2009, Quantum Inf. Comput..
[29] M. Van den Nest,et al. Quantum matchgate computations and linear threshold gates , 2010, 1005.1143.
[30] Michael Larsen,et al. A Modular Functor Which is Universal¶for Quantum Computation , 2000, quant-ph/0001108.
[31] P. Zoller,et al. Fault-tolerant dissipative preparation of atomic quantum registers with fermions (11 pages) , 2005, quant-ph/0502171.
[32] Richard H. Bartels,et al. Algorithm 432 [C2]: Solution of the matrix equation AX + XB = C [F4] , 1972, Commun. ACM.
[33] David P. DiVincenzo,et al. Classical simulation of noninteracting-fermion quantum circuits , 2001, ArXiv.
[34] J Eisert,et al. Dissipative quantum Church-Turing theorem. , 2011, Physical review letters.
[35] John Preskill,et al. Topological Quantum Computation , 1998, QCQC.
[36] E. Farhi,et al. A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.