Classical simulation of dissipative fermionic linear optics

Fermionic linear optics is a limited form of quantum computation which is known to be efficiently simulable on a classical computer. We revisit and extend this result by enlarging the set of available computational gates: in addition to unitaries and measurements, we allow dissipative evolution governed by a Markovian master equation with linear Lindblad operators. We show that this more general form of fermionic computation is also simulable efficiently by classical means. Given a system of N fermionic modes, our algorithm simulates any such gate in time O(N3) while a single-mode measurement is simulated in time O(N2). The steady state of the Lindblad equation can be computed in time O(N3).

[1]  Tomaz Prosen,et al.  Spectral theorem for the Lindblad equation for quadratic open fermionic systems , 2010, 1005.0763.

[2]  Tomaz Prosen,et al.  Quantum phase transition in a far-from-equilibrium steady state of an XY spin chain. , 2008, Physical review letters.

[3]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[4]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[5]  P. Recher,et al.  Unpaired Majorana fermions in quantum wires , 2001 .

[6]  F. Verstraete,et al.  Quantum computation and quantum-state engineering driven by dissipation , 2009 .

[7]  Tomaz Prosen,et al.  Exact solution of Markovian master equations for quadratic Fermi systems: thermal baths, open XY spin chains and non-equilibrium phase transition , 2009, 0910.0195.

[8]  Richard Jozsa,et al.  Matchgate and space-bounded quantum computations are equivalent , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[9]  M. Freedman,et al.  Topological Quantum Computation , 2001, quant-ph/0101025.

[10]  C. Beenakker,et al.  Charge detection enables free-electron quantum computation. , 2004, Physical Review Letters.

[11]  Sergey Bravyi,et al.  Lagrangian representation for fermionic linear optics , 2004, Quantum Inf. Comput..

[12]  Leslie G. Valiant,et al.  Quantum computers that can be simulated classically in polynomial time , 2001, STOC '01.

[13]  A V Gorshkov,et al.  Robust quantum state transfer in random unpolarized spin chains. , 2010, Physical review letters.

[14]  P. Zoller,et al.  Topology by dissipation in atomic quantum wires , 2011, 1105.5947.

[15]  L. Landau Fault-tolerant quantum computation by anyons , 2003 .

[16]  Alexei Kitaev,et al.  Anyons in an exactly solved model and beyond , 2005, cond-mat/0506438.

[17]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[18]  P. Zoller,et al.  A Rydberg quantum simulator , 2009, 0907.1657.

[19]  A. Kitaev,et al.  Fermionic Quantum Computation , 2000, quant-ph/0003137.

[20]  A. Dzhioev,et al.  Super-fermion representation of quantum kinetic equations for the electron transport problem. , 2010, The Journal of chemical physics.

[21]  A. Kitaev Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[22]  R. Feynman Simulating physics with computers , 1999 .

[23]  A V Gorshkov,et al.  Topologically protected quantum state transfer in a chiral spin liquid , 2011, Nature Communications.

[24]  Emanuel Knill,et al.  Fermionic Linear Optics and Matchgates , 2001, ArXiv.

[25]  Tomaz Prosen,et al.  Third quantization: a general method to solve master equations for quadratic open Fermi systems , 2008, 0801.1257.

[26]  R. Jozsa,et al.  Matchgates and classical simulation of quantum circuits , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[27]  Robert König,et al.  Disorder-Assisted Error Correction in Majorana Chains , 2011, 1108.3845.

[28]  Stephen P. Jordan,et al.  Permutational quantum computing , 2009, Quantum Inf. Comput..

[29]  M. Van den Nest,et al.  Quantum matchgate computations and linear threshold gates , 2010, 1005.1143.

[30]  Michael Larsen,et al.  A Modular Functor Which is Universal¶for Quantum Computation , 2000, quant-ph/0001108.

[31]  P. Zoller,et al.  Fault-tolerant dissipative preparation of atomic quantum registers with fermions (11 pages) , 2005, quant-ph/0502171.

[32]  Richard H. Bartels,et al.  Algorithm 432 [C2]: Solution of the matrix equation AX + XB = C [F4] , 1972, Commun. ACM.

[33]  David P. DiVincenzo,et al.  Classical simulation of noninteracting-fermion quantum circuits , 2001, ArXiv.

[34]  J Eisert,et al.  Dissipative quantum Church-Turing theorem. , 2011, Physical review letters.

[35]  John Preskill,et al.  Topological Quantum Computation , 1998, QCQC.

[36]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.