Vertical Geometry, 2-A Forward Current Ga2O3 Schottky Rectifiers on Bulk Ga2O3 Substrates

Large area (up to 0.2 cm<sup>2</sup>) Ga<sub>2</sub>O<sub>3</sub> rectifiers without edge termination were fabricated on a Si-doped n-Ga<sub>2</sub>O<sub>3</sub> drift layer grown by halide vapor phase epitaxy on a Sn-doped n<sup>+</sup>Ga<sub>2</sub>O<sub>3</sub> (001) substrate. A forward current of 2.2 A was achieved in single-sweep voltage mode, a record for Ga<sub>2</sub>O<sub>3</sub> rectifiers. The on-state resistance was <inline-formula> <tex-math notation="LaTeX">$0.26~\Omega ~ \cdot$ </tex-math></inline-formula> cm<sup>2</sup> for these largest diodes, decreasing to <inline-formula> <tex-math notation="LaTeX">$5.9\times 10^{-4} \Omega \,\, \cdot$ </tex-math></inline-formula> cm<sup>2</sup> for <inline-formula> <tex-math notation="LaTeX">$40\times 40\,\,\mu \text{m}^{2}$ </tex-math></inline-formula> devices. The temperature dependence (25 °C–125 °C) of forward current density was used to extract the barrier height of 1.08 eV for Ni and a Richardson’s constant of 48 A <inline-formula> <tex-math notation="LaTeX">$\cdot$ </tex-math></inline-formula> cm<sup>−2</sup> <inline-formula> <tex-math notation="LaTeX">$\cdot \,\,\text{K}^{-2}$ </tex-math></inline-formula>. Ideality factors were in the range 1.01–1.05, with the barrier height decreasing with temperature. The reverse breakdown was a strong function of diode area, decreasing from 466 V (<inline-formula> <tex-math notation="LaTeX">$1.6\times 10^{-5}$ </tex-math></inline-formula> cm<sup>2</sup> to 15 V for 0.2 cm<sup>2</sup>. This led to power figure-of-merits (<inline-formula> <tex-math notation="LaTeX">${V}_{B}^{2}/\text{R}_{\mathrm{ON}})$ </tex-math></inline-formula> in the range <inline-formula> <tex-math notation="LaTeX">$3.68\times 10^{8}$ </tex-math></inline-formula>–865 W <inline-formula> <tex-math notation="LaTeX">$\cdot$ </tex-math></inline-formula> cm<sup>−2</sup> over this area range. The reverse breakdown voltage scaled approximately as the contact perimeter, indicating it was dominated by the surface and decreased with temperature with a negative temperature coefficient of 0.45 V <inline-formula> <tex-math notation="LaTeX">$\cdot \,\,\text{K}^{-1}$ </tex-math></inline-formula>. The reverse recovery time when switching from +1 V to reverse bias was 34 ns.

[1]  G. Heydt,et al.  Applications Of High Power Electronic Switches In The Electric Power Utility Industry And The Needs For High Power Switching Devices , 1997 .

[2]  Bantval J. Baliga,et al.  Role of defects in producing negative temperature dependence of breakdown voltage in SiC , 1998 .

[3]  R. Fornari,et al.  Schottky barrier height of Au on the transparent semiconducting oxide β-Ga2O3 , 2012 .

[4]  Toshiro Futagi,et al.  Characterization of defects in β-Ga2O3 single crystals , 2015 .

[5]  Yuta Koga,et al.  High-mobility β-Ga2O3() single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes with Ni contact , 2015 .

[6]  Kevin D. Leedy,et al.  Enhancement-mode Ga2O3 wrap-gate fin field-effect transistors on native (100) β-Ga2O3 substrate with high breakdown voltage , 2016 .

[7]  M. Kasu,et al.  Observation of nanometer-sized crystalline grooves in as-grown β-Ga2O3 single crystals , 2016 .

[8]  Roger H. French,et al.  Heteroepitaxy of N-type β-Ga2O3 thin films on sapphire substrate by low pressure chemical vapor deposition , 2016 .

[9]  M. Kasu,et al.  Relationship between crystal defects and leakage current in β-Ga2O3 Schottky barrier diodes , 2016 .

[10]  Jaime A. Freitas,et al.  Structural, Optical, and Electrical Characterization of Monoclinic β-Ga2O3 Grown by MOVPE on Sapphire Substrates , 2016, Journal of Electronic Materials.

[11]  Akito Kuramata,et al.  Field-Plated Ga2O3 MOSFETs With a Breakdown Voltage of Over 750 V , 2016, IEEE Electron Device Letters.

[12]  Zbigniew Galazka,et al.  3.8-MV/cm Breakdown Strength of MOVPE-Grown Sn-Doped $\beta $ -Ga2O3 MOSFETs , 2016, IEEE Electron Device Letters.

[13]  Akito Kuramata,et al.  High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth , 2016 .

[14]  S. Yamakoshi,et al.  Structural evaluation of defects in β-Ga2O3 single crystals grown by edge-defined film-fed growth process , 2016 .

[15]  S. Yamakoshi,et al.  Temperature-dependent capacitance–voltage and current–voltage characteristics of Pt/Ga2O3 (001) Schottky barrier diodes fabricated on n––Ga2O3 drift layers grown by halide vapor phase epitaxy , 2016 .

[16]  Akito Kuramata,et al.  Origins of etch pits in β-Ga2O3(010) single crystals , 2016 .

[17]  Akito Kuramata,et al.  Recent progress in Ga2O3 power devices , 2016 .

[18]  S. Yamakoshi,et al.  Carrier confinement observed at modulation-doped β-(AlxGa1−x)2O3/Ga2O3 heterojunction interface , 2017 .

[19]  Zbigniew Galazka,et al.  $\beta$ -Ga2O3 MOSFETs for Radio Frequency Operation , 2017, IEEE Electron Device Letters.

[20]  R. Davis,et al.  Electrical behavior of β-Ga2O3 Schottky diodes with different Schottky metals , 2017 .

[21]  Akito Kuramata,et al.  1-kV vertical Ga2O3 field-plated Schottky barrier diodes , 2017 .

[22]  M. Kasu,et al.  Crystal defects observed by the etch-pit method and their effects on Schottky-barrier-diode characteristics on β-Ga2O3 , 2017 .

[23]  Holger von Wenckstern,et al.  Group‐III Sesquioxides: Growth, Physical Properties and Devices , 2017 .

[24]  M. Kasu,et al.  Electrical properties of Schottky barrier diodes fabricated on (001) β-Ga2O3 substrates with crystal defects , 2017 .

[25]  S. J. Pearton,et al.  Perspective—Opportunities and Future Directions for Ga2O3 , 2017 .

[26]  Alex Q. Huang,et al.  Power Semiconductor Devices for Smart Grid and Renewable Energy Systems , 2017, Proceedings of the IEEE.

[27]  Alex Lidow,et al.  GaN-on-Si Power Technology: Devices and Applications , 2017, IEEE Transactions on Electron Devices.

[28]  U. Mishra,et al.  Demonstration of β-(AlxGa1−x)2O3/β-Ga2O3 modulation doped field-effect transistors with Ge as dopant grown via plasma-assisted molecular beam epitaxy , 2017 .

[29]  F. Ren,et al.  Temperature-Dependent Characteristics of Ni/Au and Pt/Au Schottky Diodes on β-Ga2O3 , 2017 .

[30]  G. Jessen,et al.  High pulsed current density β-Ga2O3 MOSFETs verified by an analytical model corrected for interface charge , 2017 .

[31]  Ali Shakouri,et al.  β-Ga2O3 on insulator field-effect transistors with drain currents exceeding 1.5 A/mm and their self-heating effect , 2017, 1703.06197.

[32]  Andreas Fiedler,et al.  Editors' Choice—Si- and Sn-Doped Homoepitaxial β-Ga2O3 Layers Grown by MOVPE on (010)-Oriented Substrates , 2017 .

[33]  Steven A. Ringel,et al.  Influence of metal choice on (010) β-Ga2O3 Schottky diode properties , 2017 .

[34]  Yoshiaki Nakata,et al.  Enhancement-mode Ga2O3 MOSFETs with Si-ion-implanted source and drain , 2017 .

[35]  Stephen J. Pearton,et al.  1.5 MeV electron irradiation damage in β-Ga2O3 vertical rectifiers , 2017 .

[36]  S. Yamakoshi,et al.  Depletion-mode vertical Ga2O3 trench MOSFETs fabricated using Ga2O3 homoepitaxial films grown by halide vapor phase epitaxy , 2017 .

[37]  Stephen J. Pearton,et al.  High reverse breakdown voltage Schottky rectifiers without edge termination on Ga2O3 , 2017 .

[38]  Steffen Ganschow,et al.  Scaling-Up of Bulk β-Ga2O3 Single Crystals by the Czochralski Method , 2017 .

[39]  Modulation-doped β-(Al0.2Ga0.8)2O3/Ga2O3 field-effect transistor , 2017, 1706.09492.

[40]  Masataka Higashiwaki,et al.  Guest Editorial: The dawn of gallium oxide microelectronics , 2018 .

[41]  Stephen J. Pearton,et al.  A review of Ga2O3 materials, processing, and devices , 2018 .