Three recipes for quasi-interpolation with cubic Powell-Sabin splines

Abstract We investigate the construction of bivariate quasi-interpolation methods based on C 1 cubic Powell–Sabin B-spline representations. Rather than using a large set of functional data to specify all the parameters in such representations, we study how to reduce them by imposing different super-smoothness properties while retaining cubic precision. This results in three recipes, which are completely general in the sense that they can be implemented with any local cubic polynomial approximation scheme (or a mixture of them). More precisely, they embed C 2 super-smoothness at the vertices and across the edges, C 2 super-smoothness inside the macro-triangles, and smoothness of Clough–Tocher type, respectively. To demonstrate their usefulness, we derive four specific methods based on local Hermite and Lagrange interpolation. We conclude with a selection of numerical experiments.

[1]  Malcolm A. Sabin,et al.  Piecewise Quadratic Approximations on Triangles , 1977, TOMS.

[2]  Hendrik Speleers,et al.  On multivariate polynomials in Bernstein-Bézier form and tensor algebra , 2011, J. Comput. Appl. Math..

[3]  Paul Dierckx,et al.  On calculating normalized Powell-Sabin B-splines , 1997, Comput. Aided Geom. Des..

[4]  M. Lamnii,et al.  Cubic spline quasi-interpolants on Powell–Sabin partitions , 2014 .

[5]  Jan Grošelj A normalized representation of super splines of arbitrary degree on Powell–Sabin triangulations , 2016 .

[6]  Hendrik Speleers,et al.  A Family of Smooth Quasi-interpolants Defined Over Powell–Sabin Triangulations , 2015 .

[7]  A. Serghini,et al.  Polar forms and quadratic spline quasi-interpolants on Powell--Sabin partitions , 2009 .

[8]  Huan-Wen Liu,et al.  A bivariate C1 cubic super spline space on Powell-Sabin triangulation , 2008, Comput. Math. Appl..

[9]  C. D. Boor,et al.  Box splines , 1993 .

[10]  Hendrik Speleers,et al.  Construction of Normalized B-Splines for a Family of Smooth Spline Spaces Over Powell–Sabin Triangulations , 2013 .

[11]  Carla Manni,et al.  Quadratic spline quasi-interpolants on Powell-Sabin partitions , 2007, Adv. Comput. Math..

[12]  Jan Groselj,et al.  C1 cubic splines on Powell-Sabin triangulations , 2016, Appl. Math. Comput..

[13]  Larry L. Schumaker,et al.  Spline functions on triangulations , 2007, Encyclopedia of mathematics and its applications.

[14]  Ahmed Tijini,et al.  A normalized basis for C1 cubic super spline space on Powell-Sabin triangulation , 2014, Math. Comput. Simul..

[15]  Karsten Opitz,et al.  Hybrid Cubic Bézier Triangle Patches , 1992 .

[16]  Hendrik Speleers A new B-spline representation for cubic splines over Powell-Sabin triangulations , 2015, Comput. Aided Geom. Des..

[17]  Hendrik Speleers Interpolation with quintic Powell-Sabin splines , 2012 .

[18]  Stephen Mann,et al.  Cubic precision Clough-Tocher interpolation , 1999, Comput. Aided Geom. Des..

[19]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[20]  D. Sbibih,et al.  Superconvergent $$C^1$$C1 cubic spline quasi-interpolants on Powell-Sabin partitions , 2015 .

[21]  Paul Sablonnière,et al.  Recent Progress on Univariate and Multivariate Polynomial and Spline Quasi-interpolants , 2005 .

[22]  Hendrik Speleers,et al.  Construction and analysis of cubic Powell-Sabin B-splines , 2017, Comput. Aided Geom. Des..