Three recipes for quasi-interpolation with cubic Powell-Sabin splines
暂无分享,去创建一个
[1] Malcolm A. Sabin,et al. Piecewise Quadratic Approximations on Triangles , 1977, TOMS.
[2] Hendrik Speleers,et al. On multivariate polynomials in Bernstein-Bézier form and tensor algebra , 2011, J. Comput. Appl. Math..
[3] Paul Dierckx,et al. On calculating normalized Powell-Sabin B-splines , 1997, Comput. Aided Geom. Des..
[4] M. Lamnii,et al. Cubic spline quasi-interpolants on Powell–Sabin partitions , 2014 .
[5] Jan Grošelj. A normalized representation of super splines of arbitrary degree on Powell–Sabin triangulations , 2016 .
[6] Hendrik Speleers,et al. A Family of Smooth Quasi-interpolants Defined Over Powell–Sabin Triangulations , 2015 .
[7] A. Serghini,et al. Polar forms and quadratic spline quasi-interpolants on Powell--Sabin partitions , 2009 .
[8] Huan-Wen Liu,et al. A bivariate C1 cubic super spline space on Powell-Sabin triangulation , 2008, Comput. Math. Appl..
[9] C. D. Boor,et al. Box splines , 1993 .
[10] Hendrik Speleers,et al. Construction of Normalized B-Splines for a Family of Smooth Spline Spaces Over Powell–Sabin Triangulations , 2013 .
[11] Carla Manni,et al. Quadratic spline quasi-interpolants on Powell-Sabin partitions , 2007, Adv. Comput. Math..
[12] Jan Groselj,et al. C1 cubic splines on Powell-Sabin triangulations , 2016, Appl. Math. Comput..
[13] Larry L. Schumaker,et al. Spline functions on triangulations , 2007, Encyclopedia of mathematics and its applications.
[14] Ahmed Tijini,et al. A normalized basis for C1 cubic super spline space on Powell-Sabin triangulation , 2014, Math. Comput. Simul..
[15] Karsten Opitz,et al. Hybrid Cubic Bézier Triangle Patches , 1992 .
[16] Hendrik Speleers. A new B-spline representation for cubic splines over Powell-Sabin triangulations , 2015, Comput. Aided Geom. Des..
[17] Hendrik Speleers. Interpolation with quintic Powell-Sabin splines , 2012 .
[18] Stephen Mann,et al. Cubic precision Clough-Tocher interpolation , 1999, Comput. Aided Geom. Des..
[19] Carl de Boor,et al. A Practical Guide to Splines , 1978, Applied Mathematical Sciences.
[20] D. Sbibih,et al. Superconvergent $$C^1$$C1 cubic spline quasi-interpolants on Powell-Sabin partitions , 2015 .
[21] Paul Sablonnière,et al. Recent Progress on Univariate and Multivariate Polynomial and Spline Quasi-interpolants , 2005 .
[22] Hendrik Speleers,et al. Construction and analysis of cubic Powell-Sabin B-splines , 2017, Comput. Aided Geom. Des..