Evolution of Biological Complexity

To make a case for or against a trend in the evolution of complexity in biological evolution, complexity needs to be both rigorously defined and measurable. A recent information-theoretic (but intuitively evident) definition identifies genomic complexity with the amount of information a sequence stores about its environment. We investigate the evolution of genomic complexity in populations of digital organisms and monitor in detail the evolutionary transitions that increase complexity. We show that, because natural selection forces genomes to behave as a natural "Maxwell Demon," within a fixed environment, genomic complexity is forced to increase.

[1]  G. D,et al.  American Naturalist , 1867, Nature.

[2]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[3]  L. Brillouin,et al.  Science and information theory , 1956 .

[4]  G. Basharin On a Statistical Estimate for the Entropy of a Sequence of Independent Random Variables , 1959 .

[5]  EDWIN C. Webb The Enzymes , 1961, Nature.

[6]  H. Muller THE RELATION OF RECOMBINATION TO MUTATIONAL ADVANCE. , 1964, Mutation research.

[7]  A. Dickson On Evolution , 1884, Science.

[8]  M. Gell-Mann,et al.  Physics Today. , 1966, Applied optics.

[9]  D. Mills,et al.  An extracellular Darwinian experiment with a self-duplicating nucleic acid molecule. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[10]  R. Britten,et al.  Gene regulation for higher cells: a theory. , 1969, Science.

[11]  John Maynard Smith,et al.  Natural Selection and the Concept of a Protein Space , 1970, Nature.

[12]  R. Britten,et al.  Repetitive and Non-Repetitive DNA Sequences and a Speculation on the Origins of Evolutionary Novelty , 1971, The Quarterly Review of Biology.

[13]  Lila L. Gatlin,et al.  Information theory and the living system , 1972 .

[14]  R. Lewontin ‘The Selfish Gene’ , 1977, Nature.

[15]  E. Wiley,et al.  Nonequilibrium Thermodynamics and Evolution: A Response to Løvtrup , 1983 .

[16]  J. Collier Entropy in evolution , 1986 .

[17]  T. D. Schneider,et al.  Information content of binding sites on nucleotide sequences. , 1986, Journal of molecular biology.

[18]  S. K. Sessions The evolution of genome size Edited by T. Cavalier-Smith. New York: John Wiley & Sons. (1985). 523 pp. $59.95 , 1986, Cell.

[19]  R. Lenski,et al.  Long-Term Experimental Evolution in Escherichia coli. I. Adaptation and Divergence During 2,000 Generations , 1991, The American Naturalist.

[20]  R. Landauer Information is physical , 1991 .

[21]  J. Saunders Population Genetics of bacteria. , 1994 .

[22]  Eörs Szathmáry,et al.  The Major Transitions in Evolution , 1997 .

[23]  Charles H. Bennett,et al.  Universal computation and physical dynamics , 1995 .

[24]  F. Maytag Evolution , 1996, Arch. Mus. Informatics.

[25]  D. Kirk Volvox: A Search for the Molecular and Genetic Origins of Multicellularity and Cellular Differentiation , 1997 .

[26]  R. Lenski,et al.  Test of synergistic interactions among deleterious mutations in bacteria , 1997, Nature.

[27]  C. Ofria,et al.  Genome complexity, robustness and genetic interactions in digital organisms , 1999, Nature.

[28]  C. Adami,et al.  Physical complexity of symbolic sequences , 1996, adap-org/9605002.

[29]  Christoph Endres,et al.  Introduction to Artificial Life , 2000, Künstliche Intell..

[30]  A. Whitaker The Fabric of Reality , 2001 .