Convolution potential sweep voltammetry

Summary Starting from digitalized polarization curves, a new method is proposed for processing the data obtained by linear sweep voltammetry. (LSV). This method, termed Convolution Potential Sweep Voltammetry (CPSV) consists in calculating directly from the experimental data the convolution integral of the current-time function with the function t −1/2 . The formal kinetics of the basic reaction schemes involving rate determining chemical reactions or charge transfers is performed. Correction procedures for sphericity effects and ohmic drop are proposed. The applicability of the method is illustrated using the reduction of meta -dinitrobenzene in DMF as example. It is shown that the main advantages of CPSV over LSV are: ( a ) simplication of the mechanistic analysis when secondary chemical reactions are involved, ( b ) analysis of the charge transfer kinetics and correction of double layer effects without knowing a priori the form of the rate-potential relationship, ( c ) improvement in accuracy owing to the use of all the information contained in the polarization curve and not only in the peak values, ( d ) significant simplification of the correction for ohmic drop.

[1]  Dennis H. Evans,et al.  Acquisition and analysis of cyclic voltammetric data , 1973 .

[2]  Richard S. Nicholson,et al.  Some Examples of the Numerical Solution of Nonlinear Integral Equations , 1965 .

[3]  W. D. Vries,et al.  Distortion of linear-sweep polarograms by ohmic drop , 1965 .

[4]  W. Dilling,et al.  Benzylic chlorides in the Darzens reaction , 1967 .

[5]  S. Benson Statistical Factors in the Correlation of Rate Constants and Equilibrium Constants , 1958 .

[6]  Jean-Michel Savéant,et al.  Convolution potential sweep voltammetry: III. Effect of sweep rate cyclic voltammetry , 1974 .

[7]  S. Feldberg Theory of regenerative second-order mechanisms in chronoamperometry. The paradox of disproportionation , 1969 .

[8]  J. Savéant,et al.  Potential-sweep chronoamperometry: Kinetic currents for first-order chemical reaction parallel to electron-transfer process (catalytic currents)☆ , 1965 .

[9]  I. Ruić Logarithmic analysis of two overlapping D.C. Polarographic waves: IV. Quasireversible electrode processes , 1972 .

[10]  J. Savéant,et al.  RECHERCHES SUR LES COURANTS CATALYTIQUES EN POLAROGRAPHIE—OSCILLOGRAPHIQUE À BALAYAGE LINÉAIRE DE TENSION. ETUDE THÉORIQUE , 1960 .

[11]  S. Roffia,et al.  Potential sweep voltammetry with uncompensated ohmic potential drop. Irreversible charge transfer , 1969 .

[12]  J. Savéant,et al.  Linear sweep voltammetry—compensation of cell resistance and stability , 1972 .

[13]  S. P. Perone,et al.  On-line interactive data processing. II. Processing voltammetric electrochemical data , 1971 .

[14]  J. Savéant,et al.  Linear sweep voltammetry. Ohmic drop and chemical polarization , 1971 .

[15]  J. Savéant,et al.  Dimerization, disproportionation and e.c.e. mechanisms in the reduction of aromatic carbonyl compounds in alkaline media , 1971 .

[16]  J. Savéant,et al.  Potential-sweep chronoamperometry theory of kinetic currents in the case of a first order chemical reaction preceding the electron-transfer process , 1963 .

[17]  J. Savéant,et al.  Potential-sweep voltammetry: General theory of chemical polarization , 1967 .

[18]  J. Savéant,et al.  Linear sweep voltammetry. Effect of uncompensated cell resistance and double layer charging on polarization curves , 1970 .

[19]  Keith B. Oldham,et al.  Semiintegral electroanalysis. Shapes of neopolarograms , 1973 .

[20]  J. Savéant,et al.  Linear sweep voltammetry: Kinetic control by charge transfer and/or secondary chemical reactions , 1973 .

[21]  J. Savéant,et al.  Electro-oxidation of 1,2-ene-diamines , 1970 .

[22]  D. S. Polcyn,et al.  Multistep Charge Transfers in Stationary Electrode Polarography. , 1966 .

[23]  J. Savéant,et al.  Disproportionation and ECE mechanisms—I. Theoretical analysis. Relationships for linear sweep voltammetry☆ , 1968 .

[24]  J. Savéant,et al.  Electrodimerization: I. One-electron irreversible dimerization. Diagnostic criteria and rate determination procedures for voltammetric studies , 1970 .

[25]  Keith B. Oldham,et al.  Signal-independent electroanalytical method , 1972 .

[26]  R. L. Myers,et al.  Determination of E20 - E10, for overlapping waves in stationary electrode polarography , 1969 .

[27]  J. Gorvin 135. Polyphenylethylenes. Part I. Preparation and characteristics of tetra-p-nitrophenylethylene , 1959 .

[28]  Keith B. Oldham,et al.  Semiintegral electroanalysis. Theory and verification , 1972 .

[29]  W. H. Reinmuth Nernst-controlled Currents in Hanging-drop Polarography , 1957 .

[30]  J. Savéant,et al.  Thermodynamics of successive electron transfers: Internal and solvation enthalpy and entropy variations in a series of polynitro compounds , 1973 .

[31]  J. Savéant,et al.  Linear sweep voltammetry—Bandpass limitations andmaximum usable sweep rate in the study of faradaic processes , 1974 .

[32]  J. Savéant,et al.  ElectrodimerizationX. Solvation and protonation in the EHD of activated olefins in low acidity media , 1974 .

[33]  J. Savéant,et al.  Electrodimerization: VII. Electrode and solution electron transfers in the radical-substrate coupling mechanism. discriminative criteria from the other mechanisms in voltammetric studies (Linear sweep, rotating disc, polarography) , 1973 .

[34]  M. Caselli,et al.  Double-layer effect correction in chronoamperometry with linear potential sweep☆ , 1968 .