Measurements of Vapor Pressure, Heat Capacity, and Density along the Saturation Line for ε-Caprolactam, Pyrazine, 1,2-Propanediol, Triethylene Glycol, Phenyl Acetylene, and Diphenyl Acetylene

This paper reports measurements made for DIPPR Research Project 821 in the 1996 Project Year. Vapor pressures were measured to a pressure limit of 270 kPa (unless decomposition occurred) for all six compounds using a twin ebulliometric apparatus. Additionally, for e-caprolactam, measurements at low pressures (0.043 kPa to 3.08 kPa) were performed using an inclined-piston apparatus. Liquid-phase densities along the saturation line were measured for each compound over a range of temperatures (ambient to a maximum of 548 K). A differential scanning calorimeter was used to measure two-phase (liquid + vapor) heat capacities for each compound in the temperature region ambient to the critical temperature or lower decomposition point. A critical temperature and the corresponding critical density were determined experimentally for pyrazine. The results of all the measurements were combined to derive a series of thermophysical properties including critical temperature, critical density, critical pressure, acentric ...

[1]  G. M. Wilson,et al.  Critical-point measurements for nine compounds by a flow method , 2000 .

[2]  R. Chirico,et al.  Vapor Pressure of Acetophenone, (±)-1,2-Butanediol, (±)-1,3-Butanediol, Diethylene Glycol Monopropyl Ether, 1,3-Dimethyladamantane, 2-Ethoxyethyl Acetate, Ethyl Octyl Sulfide, and Pentyl Acetate , 1996 .

[3]  W. Steele Fifty years of thermodynamics research at Bartlesville: The Hugh M. Huffman legacy☆☆☆★ , 1995 .

[4]  R. Chirico,et al.  The thermodynamic properties to the temperature 700 K of naphthalene and of 2,7-dimethylnaphthalene , 1993 .

[5]  A. Fernandes,et al.  The enthalpy of sublimation of diphenylacetylene from Knudsen effusion studies , 1993 .

[6]  R. Goldberg,et al.  Conversion of temperatures and thermodynamic properties to the basis of the International Temperature Scale of 1990 (Technical Report) , 1992 .

[7]  R. Chirico,et al.  The thermodynamic properties of 2-aminobiphenyl , 1991 .

[8]  R. D. Chirico,et al.  The thermodynamic properties of dibenzothiophene , 1991 .

[9]  R. D. Chirico,et al.  The thermodynamic properties of biphenyl , 1989 .

[10]  D. Ambrose,et al.  Vapour pressures up to their critical temperatures of normal alkanes and 1-alkanols , 1989 .

[11]  E. R. Cohen,et al.  The 1986 CODATA Recommended Values Of the Fundamental Physical Constants , 1987, Journal of Research of the National Bureau of Standards.

[12]  E. Brunner Solubility of hydrogen in diols and their ethers , 1980 .

[13]  R. Boyd,et al.  Entropy changes and structural implications for crystalline phases of pyrazine , 1979 .

[14]  W. Tamplin,et al.  Saturated liquid specific heats of ethylene glycol homologs , 1979 .

[15]  Wolfgang Wagner,et al.  New vapour pressure measurements for argon and nitrogen and a new method for establishing rational vapour pressure equations , 1973 .

[16]  J. Hales,et al.  Liquid densities from 293 to 490 K of nine aromatic hydrocarbons , 1972 .

[17]  V. Schettino,et al.  Evidence for a phase transition in crystalline pyrazine , 1972 .

[18]  Robert F. Curl,et al.  The Volumetric and Thermodynamic Properties of Fluids. III. Empirical Equation for the Second Virial Coefficient1 , 1957 .

[19]  S. Mastrangelo Adiabatic Calorimeter for Determination of Cryoscopic Data , 1957 .

[20]  L. Riedel Die Flüssigkeitsdichte im Sättigungszustand. Untersuchungen über eine Erweiterung des Theorems der übereinstimmenden Zustände. Teil II , 1954 .

[21]  W. Waring Form of a Wide-Range Vapor Pressure Equation , 1954 .

[22]  T. Puck,et al.  The Studies in Vapor–Liquid Equilibria. II. The Binary System Triethylene Glycol–Water. , 1950 .

[23]  D. R. Stull,et al.  Vapor Pressure of Pure Substances. Organic and Inorganic Compounds , 1947 .

[24]  T. Puck,et al.  Studies in vapor-liquid equilibria; a new dynamic method for the determination of vapor pressures of liquids. , 1946, The Journal of physical chemistry.

[25]  H. Hibbert,et al.  Studies on Reactions Relating to Carbohydrates and Polysaccharides. LIV. The Surface Tension Constants of the Polyethylene Glycols and their Derivatives1 , 1937 .

[26]  H. Hibbert,et al.  Studies on Reactions Relating to Carbohydrates and Polysaccharides. LV. Vapor Pressures of the Polyethylene Glycols and their Derivatives1 , 1937 .

[27]  M. L. Staples,et al.  Vapor Pressures of Certain Glycols , 1935 .

[28]  D. H. Andrews,et al.  THERMAL ENERGY STUDIES. I. PHENYL DERIVATIVES OF METHANE, ETHANE AND SOME RELATED COMPOUNDS , 1931 .

[29]  W. S. Walls,et al.  ELECTRIC MOMENT AND MOLECULAR STRUCTURE. IV. THE GLYCOLS , 1931 .

[30]  A. P. Popov,et al.  (Gas + liquid) critical temperatures and pressures of polyethene glycols from HOCH2CH2OH to H(OCH2CH2)ν≈13.2OH , 1995 .

[31]  Y. Arai,et al.  Vapor Pressures of Alkylpyridines and Alkylpyrazines. , 1995 .

[32]  R. Chirico,et al.  Reconciliation of calorimetrically and spectroscopically derived thermodynamic properties at pressures greater than 0. 1 MPa for benzene and methylbenzene: The importance of the third virial coefficient , 1994 .

[33]  V. Krouk,et al.  Thermodynamic properties of 6-aminohexanoic lactam (ɛ-caprolactam) , 1992 .

[34]  A. Teja,et al.  The densities of polyethylene glycols , 1989 .

[35]  H. Orbey,et al.  Correlation for the third virial coefficient using Tc, Pc and ω as parameters , 1983 .

[36]  D. Bougeard,et al.  Phase Transitions of Pyrazine , 1978 .

[37]  Masayoshi Oiwa,et al.  Thermal Polymerization of Phenylacetylene , 1963 .

[38]  B. Lindberg,et al.  The Heats of Combustion and Formation of the Three Diazines and their Resonance Energies. , 1962 .

[39]  T. Ishiguro,et al.  Studies on the Polyethylene Glycols. XI: Vapor Pressure and Water Activity of Triethylene Glycol-Water System@@@トリエチレングリコール-水系の蒸気圧及び水活量 , 1955 .