A weak constraint inverse for a zero-dimensional marine ecosystem model
暂无分享,去创建一个
[1] M. Kahru,et al. Ocean Color Chlorophyll Algorithms for SEAWIFS , 1998 .
[2] James G. Richman,et al. Data assimilation and a pelagic ecosystem model: parameterization using time series observations , 1998 .
[3] Eric P. Chassignet,et al. Ocean modeling and parameterization , 1998 .
[4] Andrew M. Gleason,et al. Calculus (2nd ed.) , 1998 .
[5] Jens Schröter,et al. Parameter Estimation in Dynamical Models , 1998 .
[6] Peter G. Challenor,et al. A Markov chain Monte Carlo method for estimation and assimilation into models , 1997 .
[7] G. Evensen,et al. Parameter estimation solving a weak constraint variational formulation for an Ekman model , 1997 .
[8] Geir Evensen,et al. Advanced Data Assimilation for Strongly Nonlinear Dynamics , 1997 .
[9] Michael T. Heath,et al. Scientific Computing , 2018 .
[10] Isabelle Dadou,et al. Assimilation of surface data in a one-dimensional physical-biogeochemical model of the surface ocean. 2. Adjusting a simple trophic model to chlorophyll, temperature, nitrate, and pCO2 data , 1996 .
[11] V. Echevin,et al. Assimilation of surface data in a one-dimensional physical-biogeochemical model of the surface ocean , 1996 .
[12] L. Leslie,et al. Generalized inversion of a global numerical weather prediction model , 1996 .
[13] G. Hurtt,et al. A pelagic ecosystem model calibrated with BATS data , 1996 .
[14] E. Hofmann,et al. Time series sampling and data assimilation in a simple marine ecosystem model , 1996 .
[15] R. McOwen. Partial differential equations , 1995 .
[16] Richard J. Matear,et al. Parameter optimization and analysis of ecosystem models using simulated annealing: a case study at Station P , 1995 .
[17] G. Evans,et al. The Use of Optimization Techniques to Model Marine Ecosystem Dynamics at the JGOFS Station at 47 degrees N 20 degrees W [and Discussion] , 1995 .
[18] Solving for the generalized inverse of the Lorenz model , 1995 .
[19] G. Evans,et al. THE USE OF OPTIMIZATION TECHNIQUES TO MODEL MARINE ECOSYSTEM DYNAMICS AT THE JGOFS STATION AT 17 N 20 W , 1995 .
[20] S. V. Semovski,et al. Model of the annual phytoplankton cycle in the marine-ecosystem-assimilation of monthly satellite chlorophyll data for the North Atlantic and Baltic , 1995 .
[21] Eileen E. Hofmann,et al. A data assimilation technique applied to a predator-prey model , 1995 .
[22] G. Evensen. Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .
[23] Michael Ghil,et al. Advanced data assimilation in strongly nonlinear dynamical systems , 1994 .
[24] A. Bennett. Inverse Methods in Physical Oceanography , 1992 .
[25] A. Bennett,et al. The generalized inverse of a nonlinear quasigeostrophic ocean circulation model , 1992 .
[26] R. Daley. Atmospheric Data Analysis , 1991 .
[27] P. McIntosh. Oceanographic data interpolation: Objective analysis and splines , 1990 .
[28] David K. Smith,et al. Mathematical Programming: Theory and Algorithms , 1986 .
[29] C. D. Gelatt,et al. Optimization by Simulated Annealing , 1983, Science.
[30] Philip E. Gill,et al. Practical optimization , 1981 .
[31] J. Douglas Faires,et al. Numerical Analysis , 1981 .
[32] David F. Shanno,et al. Conjugate Gradient Methods with Inexact Searches , 1978, Math. Oper. Res..
[33] D. Lezotte,et al. The generalized inverse , 1976, APLQ.
[34] A.H. Haddad,et al. Applied optimal estimation , 1976, Proceedings of the IEEE.
[35] Allen A. Goldstein,et al. Constructive Real Analysis , 1967 .
[36] C. M. Reeves,et al. Function minimization by conjugate gradients , 1964, Comput. J..
[37] R. Courant,et al. Methods of Mathematical Physics , 1962 .