A weak constraint inverse for a zero-dimensional marine ecosystem model

[1]  M. Kahru,et al.  Ocean Color Chlorophyll Algorithms for SEAWIFS , 1998 .

[2]  James G. Richman,et al.  Data assimilation and a pelagic ecosystem model: parameterization using time series observations , 1998 .

[3]  Eric P. Chassignet,et al.  Ocean modeling and parameterization , 1998 .

[4]  Andrew M. Gleason,et al.  Calculus (2nd ed.) , 1998 .

[5]  Jens Schröter,et al.  Parameter Estimation in Dynamical Models , 1998 .

[6]  Peter G. Challenor,et al.  A Markov chain Monte Carlo method for estimation and assimilation into models , 1997 .

[7]  G. Evensen,et al.  Parameter estimation solving a weak constraint variational formulation for an Ekman model , 1997 .

[8]  Geir Evensen,et al.  Advanced Data Assimilation for Strongly Nonlinear Dynamics , 1997 .

[9]  Michael T. Heath,et al.  Scientific Computing , 2018 .

[10]  Isabelle Dadou,et al.  Assimilation of surface data in a one-dimensional physical-biogeochemical model of the surface ocean. 2. Adjusting a simple trophic model to chlorophyll, temperature, nitrate, and pCO2 data , 1996 .

[11]  V. Echevin,et al.  Assimilation of surface data in a one-dimensional physical-biogeochemical model of the surface ocean , 1996 .

[12]  L. Leslie,et al.  Generalized inversion of a global numerical weather prediction model , 1996 .

[13]  G. Hurtt,et al.  A pelagic ecosystem model calibrated with BATS data , 1996 .

[14]  E. Hofmann,et al.  Time series sampling and data assimilation in a simple marine ecosystem model , 1996 .

[15]  R. McOwen Partial differential equations , 1995 .

[16]  Richard J. Matear,et al.  Parameter optimization and analysis of ecosystem models using simulated annealing: a case study at Station P , 1995 .

[17]  G. Evans,et al.  The Use of Optimization Techniques to Model Marine Ecosystem Dynamics at the JGOFS Station at 47 degrees N 20 degrees W [and Discussion] , 1995 .

[18]  Solving for the generalized inverse of the Lorenz model , 1995 .

[19]  G. Evans,et al.  THE USE OF OPTIMIZATION TECHNIQUES TO MODEL MARINE ECOSYSTEM DYNAMICS AT THE JGOFS STATION AT 17 N 20 W , 1995 .

[20]  S. V. Semovski,et al.  Model of the annual phytoplankton cycle in the marine-ecosystem-assimilation of monthly satellite chlorophyll data for the North Atlantic and Baltic , 1995 .

[21]  Eileen E. Hofmann,et al.  A data assimilation technique applied to a predator-prey model , 1995 .

[22]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[23]  Michael Ghil,et al.  Advanced data assimilation in strongly nonlinear dynamical systems , 1994 .

[24]  A. Bennett Inverse Methods in Physical Oceanography , 1992 .

[25]  A. Bennett,et al.  The generalized inverse of a nonlinear quasigeostrophic ocean circulation model , 1992 .

[26]  R. Daley Atmospheric Data Analysis , 1991 .

[27]  P. McIntosh Oceanographic data interpolation: Objective analysis and splines , 1990 .

[28]  David K. Smith,et al.  Mathematical Programming: Theory and Algorithms , 1986 .

[29]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[30]  Philip E. Gill,et al.  Practical optimization , 1981 .

[31]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[32]  David F. Shanno,et al.  Conjugate Gradient Methods with Inexact Searches , 1978, Math. Oper. Res..

[33]  D. Lezotte,et al.  The generalized inverse , 1976, APLQ.

[34]  A.H. Haddad,et al.  Applied optimal estimation , 1976, Proceedings of the IEEE.

[35]  Allen A. Goldstein,et al.  Constructive Real Analysis , 1967 .

[36]  C. M. Reeves,et al.  Function minimization by conjugate gradients , 1964, Comput. J..

[37]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .