Insights into EB1 structure and the role of its C-terminal domain for discriminating microtubule tips from the lattice

EBs, key microtubule (MT) tip–tracking proteins, are elongated molecules with two interacting calponin homology (CH) domains, an arrangement reminiscent of MT- and actin-binding CH proteins. In addition, electrostatic interactions between the C-terminus of EBs and MTs drive the specificity of EBs for growing MT ends.

[1]  M. Steinmetz,et al.  Microtubule End Binding: EBs Sense the Guanine Nucleotide State , 2011, Current Biology.

[2]  A. Hoenger,et al.  GTPγS microtubules mimic the growing microtubule end structure recognized by end-binding proteins (EBs) , 2011, Proceedings of the National Academy of Sciences.

[3]  E. Meijering,et al.  In Vitro Reconstitution of the Functional Interplay between MCAK and EB3 at Microtubule Plus Ends , 2010, Current Biology.

[4]  Niels Galjart,et al.  Plus-End-Tracking Proteins and Their Interactions at Microtubule Ends , 2010, Current Biology.

[5]  R. Aebersold,et al.  Probing Native Protein Structures by Chemical Cross-linking, Mass Spectrometry, and Bioinformatics , 2010, Molecular & Cellular Proteomics.

[6]  K. Slep Structural and mechanistic insights into microtubule end-binding proteins. , 2010, Current opinion in cell biology.

[7]  H. Goodson,et al.  Effect of GFP tags on the localization of EB1 and EB1 fragments in vivo , 2010, Cytoskeleton.

[8]  Martin A. Schärer,et al.  Molecular Insights into Mammalian End-binding Protein Heterodimerization* , 2009, The Journal of Biological Chemistry.

[9]  A. Hyman,et al.  EB1 Recognizes the Nucleotide State of Tubulin in the Microtubule Lattice , 2009, PloS one.

[10]  K. Mechtler,et al.  Phosphoregulation of the budding yeast EB1 homologue Bim1p by Aurora/Ipl1p , 2009, The Journal of cell biology.

[11]  Kurt Wüthrich,et al.  An EB1-Binding Motif Acts as a Microtubule Tip Localization Signal , 2009, Cell.

[12]  John Kuriyan,et al.  Mechanism for Activation of the EGF Receptor Catalytic Domain by the Juxtamembrane Segment , 2009, Cell.

[13]  Gary G. Borisy,et al.  Mammalian end binding proteins control persistent microtubule growth , 2009, The Journal of cell biology.

[14]  S. Kandels-Lewis,et al.  CLIP-170 tracks growing microtubule ends by dynamically recognizing composite EB1/tubulin-binding sites , 2008, The Journal of cell biology.

[15]  E. Nogales,et al.  Architecture and flexibility of the yeast Ndc80 kinetochore complex. , 2008, Journal of molecular biology.

[16]  L. Amos,et al.  Mal3, the Schizosaccharomyces pombe homolog of EB1, changes the microtubule lattice , 2008, Nature Structural &Molecular Biology.

[17]  Jessica K. Polka,et al.  Implications for Kinetochore-Microtubule Attachment from the Structure of an Engineered Ndc80 Complex , 2008, Cell.

[18]  Anna Akhmanova,et al.  Tracking the ends: a dynamic protein network controls the fate of microtubule tips , 2008, Nature Reviews Molecular Cell Biology.

[19]  I. Arnal,et al.  EB1 regulates microtubule dynamics and tubulin sheet closure in vitro , 2008, Nature Cell Biology.

[20]  Ruedi Aebersold,et al.  Identification of cross-linked peptides from large sequence databases , 2008, Nature Methods.

[21]  Tobias A. Knoch,et al.  Dynamic behavior of GFP–CLIP-170 reveals fast protein turnover on microtubule plus ends , 2008, The Journal of cell biology.

[22]  M. Steinmetz,et al.  Suppression of microtubule dynamic instability by the +TIP protein EB1 and its modulation by the CAP-Gly domain of p150glued. , 2008, Biochemistry.

[23]  Liedewij Laan,et al.  Reconstitution of a microtubule plus-end tracking system in vitro , 2007, Nature.

[24]  R. Vale,et al.  Structural basis of microtubule plus end tracking by XMAP215, CLIP-170, and EB1. , 2007, Molecular cell.

[25]  J. G. de la Torre,et al.  Improved calculation of rotational diffusion and intrinsic viscosity of bead models for macromolecules and nanoparticles. , 2007, The journal of physical chemistry. B.

[26]  P. Tittmann,et al.  The Schizosaccharomyces pombe EB1 Homolog Mal3p Binds and Stabilizes the Microtubule Lattice Seam , 2006, Cell.

[27]  Ning Zhang,et al.  Protein cross-linking analysis using mass spectrometry, isotope-coded cross-linkers, and integrated computational data processing. , 2006, Journal of proteome research.

[28]  M. Gimona,et al.  CLAMP, a novel microtubule-associated protein with EB-type calponin homology. , 2005, Cell motility and the cytoskeleton.

[29]  N. Galjart,et al.  EB1 and EB3 control CLIP dissociation from the ends of growing microtubules. , 2005, Molecular biology of the cell.

[30]  M. Ikura,et al.  Structural basis for the activation of microtubule assembly by the EB1 and p150Glued complex. , 2005, Molecular cell.

[31]  Ronald D. Vale,et al.  Structural determinants for EB1-mediated recruitment of APC and spectraplakins to the microtubule plus end , 2005, The Journal of cell biology.

[32]  M. Ikura,et al.  Crystal Structure of the Amino-terminal Microtubule-binding Domain of End-binding Protein 1 (EB1)* , 2003, Journal of Biological Chemistry.

[33]  Dmitri I. Svergun,et al.  Uniqueness of ab initio shape determination in small-angle scattering , 2003 .

[34]  Anthony A. Hyman,et al.  Dynamics and mechanics of the microtubule plus end , 2022 .

[35]  E. Holzbaur,et al.  The microtubule plus-end proteins EB1 and dynactin have differential effects on microtubule polymerization. , 2003, Molecular biology of the cell.

[36]  W. Kranewitter,et al.  Functional plasticity of CH domains , 2002, FEBS letters.

[37]  Nathan A. Baker,et al.  Electrostatics of nanosystems: Application to microtubules and the ribosome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[38]  David Pellman,et al.  Microtubule “Plus-End-Tracking Proteins” The End Is Just the Beginning , 2001, Cell.

[39]  Dmitri I. Svergun,et al.  Automated matching of high- and low-resolution structural models , 2001 .

[40]  L. Su,et al.  Characterization of human MAPRE genes and their proteins. , 2001, Genomics.

[41]  P Chacón,et al.  Reconstruction of protein form with X-ray solution scattering and a genetic algorithm. , 2000, Journal of molecular biology.

[42]  J. Conway,et al.  Methods for reconstructing density maps of "single" particles from cryoelectron micrographs to subnanometer resolution. , 1999, Journal of structural biology.

[43]  D I Svergun,et al.  Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. , 1999, Biophysical journal.

[44]  M. Steinmetz,et al.  A distinct 14 residue site triggers coiled‐coil formation in cortexillin I , 1998, The EMBO journal.

[45]  D. Svergun,et al.  CRYSOL : a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates , 1995 .

[46]  Dmitri I. Svergun,et al.  Determination of the regularization parameter in indirect-transform methods using perceptual criteria , 1992 .

[47]  P. S. Kim,et al.  X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. , 1991, Science.

[48]  C. Heusèle,et al.  4',6-Diamidino-2-phenylindole, a fluorescent probe for tubulin and microtubules. , 1985, The Journal of biological chemistry.

[49]  M. Steinmetz,et al.  Structural insights into the EB1–APC interaction , 2013 .

[50]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[51]  A Leith,et al.  SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. , 1996, Journal of structural biology.