Nonplanar dust acoustic waves with transverse perturbation in dusty plasmas with variable dust charge and negative ions

A cylindrical Kadomstev-Petviashvili equation is derived in cylindrical geometry for dust acoustic waves in dusty plasmas consisting of positive ions, negative ions, and adiabatic variable charged dust grains. The effects of negative ions on the dust charge number and dust temperature, as well as the solitonic structures, such as the Nebulon and W-shape soliton, etc., have been investigated. It has also been found that the effect of transverse perturbations is the main factor that determines the formation of the Nebulon.

[1]  Yue-Yue Wang,et al.  Variable-coefficient KP equation and solitonic solution for two-temperature ions in dusty plasma , 2006 .

[2]  Chao-Qing Dai,et al.  New exact solutions to the mKdV equation with variable coefficients , 2006 .

[3]  Bo Tian,et al.  Cylindrical Kadomtsev–Petviashvili model, nebulons and symbolic computation for cosmic dust ion-acoustic waves , 2006 .

[4]  C. Dai,et al.  Quantum Soliton Solutions of Quantum Zakharov Equations for Plasmas , 2005 .

[5]  Samiran Ghosh Dust acoustic solitary wave with variable dust charge: Role of negative ions , 2005 .

[6]  Deng-Shan Wang,et al.  Further improved F-expansion method and new exact solutions of Konopelchenko–Dubrovsky equation , 2005 .

[7]  Bo Tian,et al.  On the solitonic structures of the cylindrical dust-acoustic and dust-ion-acoustic waves with symbolic computation , 2005 .

[8]  Xiaogang Wang,et al.  Effect of negative ions on dust-acoustic soliton in a dusty plasma , 2005 .

[9]  Bo Tian,et al.  Spherical nebulons and Bäcklund transformation for a space or laboratory un-magnetized dusty plasma with symbolic computation , 2005 .

[10]  S. El-Labany,et al.  Critical density solitary waves structures in a hot magnetized dusty plasma with vortexlike ion distribution in phase space , 2005 .

[11]  Xiaogang Wang,et al.  The electrostatic sheath in an electronegative dusty plasma , 2005 .

[12]  M. Djebli Charge evolution in dusty plasma expansion with negative ions , 2003 .

[13]  Abdullah Al Mamun,et al.  Charging of dust grains in a plasma with negative ions , 2003 .

[14]  Abdullah Al Mamun,et al.  Solitons, shocks and vortices in dusty plasmas , 2003 .

[15]  Xue Ju-kui,et al.  Modulational instability of cylindrical and spherical dust ion-acoustic waves , 2003 .

[16]  Jinping Tian,et al.  An Inter-modulated Solitary Wave Solution for the Higher Order Nonlinear Schrödinger Equation , 2003 .

[17]  Vivek M. Vyas,et al.  Self-consistent three-dimensional model of dust particle transport and formation of Coulomb crystals in plasma processing reactors , 2002 .

[18]  Zhenya Yan,et al.  Extended Jacobian elliptic function algorithm with symbolic computation to construct new doubly-periodic solutions of nonlinear differential equations , 2002 .

[19]  R. Franklin Electronegative plasmas—why are they so different? , 2002 .

[20]  Abdullah Al Mamun,et al.  Introduction to Dusty Plasma Physics , 2001 .

[21]  G. Morfill,et al.  Dust acoustic solitons with variable particle charge: role of the ion distribution. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  S. El-Labany,et al.  Cylindrical ion-acoustic waves in a warm multicomponent plasma , 2000 .

[23]  Tian,et al.  New types of solitary wave solutions for the higher order nonlinear Schrodinger equation , 2000, Physical review letters.

[24]  J. Allen,et al.  The double sheath associated with electron emission into a plasma containing negative ions , 1998, Journal of Plasma Physics.

[25]  P. Kintner,et al.  POLAR observations of coherent electric field structures , 1998 .

[26]  F. Melandsø Lattice waves in dust plasma crystals , 1996 .