A new approach for shape preserving interpolating curves

In this paper, we present an new approach to construct the so-called shape preserving interpolation curves. The basic idea is first to approximate the set of interpolated points with a class of MQ quasi-interpolation operators and then pass through the set with the use of multivariate interpolation by using compactly supported radial basis functions. This approach possesses the advantages of certain shape preserving and good approximation behaviors. The proposed algorithm is easy to implement.

[1]  Larry I. Schumaker ON SHAPE PRESERVING QUADRATIC SPLINE INTERPOLATION , 1983 .

[2]  R. Franke Scattered data interpolation: tests of some methods , 1982 .

[3]  M. J. D. Powell,et al.  Radial basis functions for multivariable interpolation: a review , 1987 .

[4]  James F. O'Brien,et al.  Modelling with implicit surfaces that interpolate , 2005, SIGGRAPH Courses.

[5]  R. L. Hardy Multiquadric equations of topography and other irregular surfaces , 1971 .

[6]  Hans-Peter Seidel,et al.  3D scattered data interpolation and approximation with multilevel compactly supported RBFs , 2005, Graph. Model..

[7]  J. A. Gregory Shape preserving spline interpolation , 1986 .

[8]  M. Floater,et al.  Multistep scattered data interpolation using compactly supported radial basis functions , 1996 .

[9]  C. Micchelli Interpolation of scattered data: Distance matrices and conditionally positive definite functions , 1986 .

[10]  Holger Wendland,et al.  Scattered Data Approximation: Conditionally positive definite functions , 2004 .

[11]  M. J. D. Powell,et al.  Univariate multiquadric approximation: Quasi-interpolation to scattered data , 1992 .

[12]  Kalpathi R. Subramanian,et al.  Interpolating implicit surfaces from scattered surface data using compactly supported radial basis functions , 2001, Proceedings International Conference on Shape Modeling and Applications.

[13]  Holger Wendland,et al.  Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree , 1995, Adv. Comput. Math..

[14]  Ken Brodlie,et al.  Constrained Visualization Using the Shepard Interpolation Family , 2005, Comput. Graph. Forum.

[15]  Zongmin Wu,et al.  Compactly supported positive definite radial functions , 1995 .

[16]  Martin D. Buhmann,et al.  Radial Basis Functions: Theory and Implementations: Radial basis function approximation on infinite grids , 2003 .

[17]  R. E. Carlson,et al.  The parameter R2 in multiquadric interpolation , 1991 .

[18]  Tim N. T. Goodman,et al.  Shape preserving interpolation by space curves , 1997, Comput. Aided Geom. Des..

[19]  Martin D. Buhmann Radial Basis Functions: Theory and Implementations: Radial basis functions on scattered data , 2003 .

[20]  R. Schaback Multivariate Interpolation by Polynomials and Radial Basis Functions , 2005 .

[21]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[22]  Yongqiao Xiao,et al.  Constraining global interpolation methodsfor sparse data volume visualization , 1999 .

[23]  Jan Rohman Some computational results regarding the prime numbers below 2,000,000,000 , 1973 .

[24]  L. Montefusco,et al.  Radial basis functions for the multivariate interpolation of large scattered data sets , 2002 .

[25]  Carla Manni On Shape Preserving C2 Hermite Interpolation , 2001 .

[26]  Martin D. Buhmann,et al.  Radial Basis Functions , 2021, Encyclopedia of Mathematical Geosciences.

[27]  Kalpathi R. Subramanian,et al.  Interpolating implicit surfaces from scattered surface data using compactly supported radial basis functions , 2001, Proceedings International Conference on Shape Modeling and Applications.

[28]  Zongmin Wu,et al.  Shape preserving properties and convergence of univariate multiquadric quasi-interpolation , 1994 .

[29]  Paolo Costantini,et al.  A General Scheme for Shape Preserving Planar Interpolating Curves , 2003 .