A Fitting Formula for the Merger Timescale of Galaxies in Hierarchical Clustering

We study galaxy mergers using a high-resolution cosmological hydro/N-body simulation with star formation and compare the measured merger timescales with theoretical predictions based on the Chandrasekhar formula. In contrast to Navarro et al., our numerical results indicate that the commonly used equation for the merger timescale given by Lacey and Cole systematically underestimates the merger timescales for minor mergers and overestimates those for major mergers. This behavior is partly explained by the poor performance of their expression for the Coulomb logarithm, ln (mpri/msat) . The two alternative forms ln (1 + mpri/msat) and ½ln[1 + (mpri/msat)2] for the Coulomb logarithm can account for the mass dependence of merger timescale successfully, but both of them underestimate the merger timescale by a factor 2. Since ln (1 + mpri/msat) represents the mass dependence slightly better, we adopt this expression for the Coulomb logarithm. Furthermore, we find that the dependence of the merger timescale on the circularity parameter ϵ is much weaker than the widely adopted power law ϵ0.78, whereas 0.94ϵ0.60 + 0.60 provides a good match to the data. Based on these findings, we present an accurate and convenient fitting formula for the merger timescale of galaxies in cold dark matter models.

[1]  E. Quataert,et al.  Dynamical friction and galaxy merging time-scales , 2007, 0707.2960.

[2]  S. Ho,et al.  Constraints on the merging time-scale of luminous red galaxies, or, where do all the haloes go? , 2007, 0706.0520.

[3]  D. Zaritsky,et al.  A Census of Baryons in Galaxy Clusters and Groups , 2007, Proceedings of the International Astronomical Union.

[4]  S. Khochfar,et al.  Adding Environmental Gas Physics to the Semianalytic Method for Galaxy Formation: Gravitational Heating , 2007, 0704.2418.

[5]  I. Zehavi,et al.  Galaxy Evolution from Halo Occupation Distribution Modeling of DEEP2 and SDSS Galaxy Clustering , 2007, astro-ph/0703457.

[6]  M. White,et al.  Evidence for Merging or Disruption of Red Galaxies from the Evolution of Their Clustering , 2006, astro-ph/0611901.

[7]  U. Cambridge,et al.  The influence of mass‐loss from a star cluster on its dynamical friction – I. Clusters without internal evolution , 2006, astro-ph/0611557.

[8]  C. Baugh,et al.  A primer on hierarchical galaxy formation: the semi-analytical approach , 2006, astro-ph/0610031.

[9]  S. Borgani,et al.  Properties of the galaxy population in hydrodynamical simulations of clusters , 2006, astro-ph/0609191.

[10]  J. Weller,et al.  The Bound Mass of Substructures in Dark Matter Halos , 2006, astro-ph/0603150.

[11]  V. Springel,et al.  The Influence of Baryons on the Clustering of Matter and Weak-Lensing Surveys , 2005, astro-ph/0512426.

[12]  J. Makino,et al.  Dynamical Friction on Satellite Galaxies , 2005, astro-ph/0511651.

[13]  R. Davé,et al.  Galaxy Merger Statistics and Inferred Bulge-to-Disk Ratios in Cosmological SPH Simulations , 2005, astro-ph/0509474.

[14]  G. Efstathiou,et al.  Formation of Early-Type Galaxies from Cosmological Initial Conditions , 2005, astro-ph/0512235.

[15]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[16]  R. Wechsler,et al.  The Physics of Galaxy Clustering. I. A Model for Subhalo Populations , 2004, astro-ph/0411586.

[17]  Stuart P. D. Gill,et al.  The evolution of substructure - III. The outskirts of clusters , 2004, astro-ph/0404427.

[18]  C. Conselice,et al.  The DEEP2 Galaxy Redshift Survey: Evolution of Close Galaxy Pairs and Major-Merger Rates up to z ~ 1.2 , 2004, astro-ph/0411104.

[19]  Y. Jing,et al.  Semianalytical Model of Galaxy Formation with High-Resolution N-Body Simulations , 2004, astro-ph/0408475.

[20]  A. Benson Orbital parameters of infalling dark matter substructures , 2004, astro-ph/0407428.

[21]  D. Nagai,et al.  Response of Dark Matter Halos to Condensation of Baryons: Cosmological Simulations and Improved Adiabatic Contraction Model , 2004, astro-ph/0406247.

[22]  S. White,et al.  The subhalo populations of ΛCDM dark haloes , 2004, astro-ph/0404589.

[23]  Padova,et al.  X‐ray properties of galaxy clusters and groups from a cosmological hydrodynamical simulation , 2003, astro-ph/0310794.

[24]  A. Babul,et al.  The evolution of substructure in galaxy, group and cluster haloes - I. Basic dynamics , 2003, astro-ph/0301612.

[25]  F. Bouchet,et al.  GALICS I: A hybrid N-body semi-analytic model of hierarchical galaxy formation , 2003, astro-ph/0309186.

[26]  J. Mohr,et al.  Near-Infrared Properties of Galaxy Clusters: Luminosity as a Binding Mass Predictor and the State of Cluster Baryons , 2003, astro-ph/0304033.

[27]  O. Gnedin Tidal Effects in Clusters of Galaxies , 2003, astro-ph/0302497.

[28]  J. Bullock,et al.  Halo Substructure and the Power Spectrum , 2002, astro-ph/0212339.

[29]  J. Makino,et al.  To Circularize or Not To Circularize?—Orbital Evolution of Satellite Galaxies , 2002, astro-ph/0208452.

[30]  Piero Madau,et al.  The Assembly and Merging History of Supermassive Black Holes in Hierarchical Models of Galaxy Formation , 2002, astro-ph/0207276.

[31]  T. Totani,et al.  Galaxy Number Counts in the Subaru Deep Field: Multiband Analysis in a Hierarchical Galaxy Formation Model , 2002, astro-ph/0207483.

[32]  A. Fontana,et al.  Binary Aggregations in Hierarchical Galaxy Formation: The Evolution of the Galaxy Luminosity Function , 2002, astro-ph/0204178.

[33]  A. Babul,et al.  The Dynamics of Sinking Satellites around Disk Galaxies: A Poor Man’s Alternative to High-Resolution Numerical Simulations , 2000, astro-ph/0012305.

[34]  V. Springel,et al.  GADGET: a code for collisionless and gasdynamical cosmological simulations , 2000, astro-ph/0003162.

[35]  C. Baugh,et al.  Hierarchical galaxy formation , 2000, astro-ph/0007281.

[36]  D. Weinberg,et al.  Reionization and the Abundance of Galactic Satellites , 2000, astro-ph/0002214.

[37]  J. Binney,et al.  The orbit and mass of the Sagittarius dwarf galaxy , 1999, astro-ph/9908025.

[38]  P. Salucci,et al.  Joint cosmological formation of QSOs and bulge-dominated galaxies , 1999, astro-ph/9907095.

[39]  M. Colpi,et al.  Dynamical Friction and the Evolution of Satellites in Virialized Halos: The Theory of Linear Response , 1999, astro-ph/9907088.

[40]  G. Lake,et al.  Substructure in Dark Halos: Orbital Eccentricities and Dynamical Friction , 1998, astro-ph/9811229.

[41]  G. Kauffmann,et al.  Clustering of galaxies in a hierarchical universe - I. Methods and results at z=0 , 1998, astro-ph/9805283.

[42]  U. California,et al.  Semi-analytic modelling of galaxy formation: The local Universe , 1998, astro-ph/9802268.

[43]  D. Syer,et al.  Survival of substructure within dark matter haloes , 1997, astro-ph/9712222.

[44]  G. Bryan,et al.  Statistical Properties of X-Ray Clusters: Analytic and Numerical Comparisons , 1997, astro-ph/9710107.

[45]  J. C. Muzzio,et al.  Orbital decay of galactic satellites as a result of dynamical friction , 1997 .

[46]  G. Tormen The rise and fall of satellites in galaxy clusters , 1996, astro-ph/9611078.

[47]  G. Lake,et al.  Galaxy harassment and the evolution of clusters of galaxies , 1995, Nature.

[48]  S. White,et al.  The Assembly of galaxies in a hierarchically clustering universe , 1994, astro-ph/9408067.

[49]  S. White,et al.  Simulations of X-ray clusters , 1994, astro-ph/9408069.

[50]  S. Cole,et al.  Merger rates in hierarchical models of galaxy formation – II. Comparison with N-body simulations , 1994, astro-ph/9402069.

[51]  S. White,et al.  Simulations of sinking satellites revisited , 1988 .

[52]  E. Turner,et al.  The correlation between luminosity and separation in binary galaxy systems - an effect of dynamical friction , 1979 .

[53]  S. White A Note on the Minimum Impact Parameter for Dynamical Friction Involving Spherical Clusters , 1976 .

[54]  Subrahmanyan Chandrasekhar,et al.  Dynamical friction. I. General considerations: the coefficient of dynamical friction , 1943 .