Searching for ultralight bosons within spin measurements of a population of binary black hole mergers

Ultralight bosons can form clouds around rotating black holes if their Compton wavelength is comparable to the black hole size. The boson cloud spins down the black hole through a process called superradiance, lowering the black hole spin to a characteristic value. It has been suggested that spin measurements of the black holes detected by ground-based gravitational-wave detectors can be used to constrain the mass of ultralight bosons. Unfortunately, a measurement of the \emph{individual} black hole spins is often uncertain, resulting in inconclusive results. Instead, we use hierarchical Bayesian inference to \emph{combine} information from multiple gravitational-wave sources and obtain stronger constraints. We show that hundreds of high signal-to-noise ratio gravitational-wave detections are enough to exclude (confirm) the existence of non-interacting bosons in the mass range $\left[10^{-13},3\times 10^{-12}\right]$~eV $\left([10^{-13},10^{-12}]~\rm{eV}\right)$. The precise number depends on the distribution of black hole spins at formation and the mass of the boson. From the few uninformative spin measurements of binary black hole mergers detected by LIGO and Virgo in their first two observing runs, we cannot draw statistically significant conclusions.

[1]  R. Lasenby,et al.  Black hole superradiance of self-interacting scalar fields , 2020, Physical Review D.

[2]  O. Hannuksela,et al.  Constraints on ultralight scalar bosons within black hole spin measurements from LIGO-Virgo's GWTC-2 , 2020, 2011.06010.

[3]  P. K. Panda,et al.  Open data from the first and second observing runs of Advanced LIGO and Advanced Virgo , 2019, 1912.11716.

[4]  B. Zackay,et al.  Binary black hole mergers from LIGO/Virgo O1 and O2: Population inference combining confident and marginal events , 2020, Physical Review D.

[5]  C. Haster,et al.  Multiband gravitational-wave searches for ultralight bosons , 2020, 2007.12793.

[6]  Sylvia J. Zhu,et al.  Characterizing the continuous gravitational-wave signal from boson clouds around Galactic isolated black holes , 2020, 2003.03359.

[7]  P. Pani,et al.  Black Hole Superradiant Instability from Ultralight Spin-2 Fields. , 2020, Physical review letters.

[8]  John Stout,et al.  Gravitational collider physics , 2019, Physical Review D.

[9]  C. Broeck,et al.  Science case for the Einstein telescope , 2019, Journal of Cosmology and Astroparticle Physics.

[10]  L. Lehner,et al.  Large-misalignment mechanism for the formation of compact axion structures: Signatures from the QCD axion to fuzzy dark matter , 2019, Physical Review D.

[11]  S. Fairhurst,et al.  Two-harmonic approximation for gravitational waveforms from precessing binaries , 2019, Physical Review D.

[12]  Huan Yang,et al.  Dynamic signatures of black hole binaries with superradiant clouds , 2019, Physical Review D.

[13]  I. Mandel,et al.  The origin of spin in binary black holes , 2019, Astronomy & Astrophysics.

[14]  B. Zackay,et al.  New binary black hole mergers in the second observing run of Advanced LIGO and Advanced Virgo , 2019, Physical Review D.

[15]  Zoheyr Doctor,et al.  Evolutionary roads leading to low effective spins, high black hole masses, and O1/O2 rates for LIGO/Virgo binary black holes , 2017, Astronomy & Astrophysics.

[16]  V. Cardoso,et al.  Superradiance: Energy Extraction, Black-Hole Bombs and Implications for Astrophysics and Particle Physics , 2015, 1501.06570.

[17]  S. Profumo,et al.  Superradiance and the Spins of Black Holes from LIGO and X-ray binaries , 2019, 1911.07862.

[18]  Andrew L. Miller,et al.  Direct Constraints on the Ultralight Boson Mass from Searches of Continuous Gravitational Waves. , 2019, Physical review letters.

[19]  Duncan A. Brown,et al.  Cosmic Explorer: The U.S. Contribution to Gravitational-Wave Astronomy beyond LIGO , 2019, 1907.04833.

[20]  H. Grote,et al.  Novel signatures of dark matter in laser-interferometric gravitational-wave detectors , 2019, Physical Review Research.

[21]  Y. Bouffanais,et al.  Gravitational-wave detection rates for compact binaries formed in isolation: LIGO/Virgo O3 and beyond , 2019, Physical Review D.

[22]  I. Mandel,et al.  Astrophysical science metrics for next-generation gravitational-wave detectors , 2019, Classical and Quantum Gravity.

[23]  P. Denton,et al.  Ultralight Boson Dark Matter and Event Horizon Telescope Observations of M87^{*}. , 2019, Physical review letters.

[24]  E. Berti,et al.  Ultralight boson cloud depletion in binary systems , 2019, Physical Review D.

[25]  M. Evans,et al.  Metrics for next-generation gravitational-wave detectors , 2019, Classical and Quantum Gravity.

[26]  B. Zackay,et al.  Highly spinning and aligned binary black hole merger in the Advanced LIGO first observing run , 2019, Physical Review D.

[27]  P. Meyers,et al.  First search for a stochastic gravitational-wave background from ultralight bosons , 2018, Physical Review D.

[28]  P. Pani,et al.  Impact of multiple modes on the black-hole superradiant instability , 2018, Physical Review D.

[29]  E. Berti,et al.  Follow-up signals from superradiant instabilities of black hole merger remnants , 2018, Physical Review D.

[30]  B. A. Boom,et al.  GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs , 2018 .

[31]  M. S. Shahriar,et al.  Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo , 2018, The Astrophysical Journal.

[32]  L. Winslow,et al.  First Results from ABRACADABRA-10 cm: A Search for Sub-μeV Axion Dark Matter. , 2018, Physical review letters.

[33]  A. Melatos,et al.  Directed searches for gravitational waves from ultralight bosons , 2018, Physical Review D.

[34]  T. Dent,et al.  Digging the population of compact binary mergers out of the noise , 2018, Monthly Notices of the Royal Astronomical Society.

[35]  Colm Talbot,et al.  An introduction to Bayesian inference in gravitational-wave astronomy: Parameter estimation, model selection, and hierarchical models , 2018, Publications of the Astronomical Society of Australia.

[36]  J. Gair,et al.  Extracting distribution parameters from multiple uncertain observations with selection biases , 2018, Monthly Notices of the Royal Astronomical Society.

[37]  Huan Yang,et al.  Gravitational floating orbits around hairy black holes , 2018, Physical Review D.

[38]  W. Farr,et al.  Measuring the Star Formation Rate with Gravitational Waves from Binary Black Holes , 2018, The Astrophysical Journal.

[39]  M. Zaldarriaga,et al.  Constraints on binary black hole populations from LIGO–Virgo detections , 2018, Monthly Notices of the Royal Astronomical Society.

[40]  Richard O'Shaughnessy,et al.  Reconstructing phenomenological distributions of compact binaries via gravitational wave observations , 2018, Physical Review D.

[41]  O. Hannuksela,et al.  Probing the existence of ultralight bosons with a single gravitational-wave measurement , 2018, Nature Astronomy.

[42]  D. Baumann,et al.  Probing ultralight bosons with binary black holes , 2018, Physical Review D.

[43]  P. Leaci,et al.  Semicoherent analysis method to search for continuous gravitational waves emitted by ultralight boson clouds around spinning black holes , 2018, Physical Review D.

[44]  R. O’Shaughnessy,et al.  Spin orientations of merging black holes formed from the evolution of stellar binaries , 2018, Physical Review D.

[45]  M. Oguri Effect of gravitational lensing on the distribution of gravitational waves from distant binary black hole mergers , 2018, Monthly Notices of the Royal Astronomical Society.

[46]  Stephen R. Taylor,et al.  Mining gravitational-wave catalogs to understand binary stellar evolution: A new hierarchical Bayesian framework , 2018, Physical Review D.

[47]  D. Marsh,et al.  Black hole spin constraints on the mass spectrum and number of axionlike fields , 2018, Physical Review D.

[48]  K. Chatziioannou,et al.  Gravitational-wave astrophysics with effective-spin measurements: Asymmetries and selection biases , 2018, Physical Review D.

[49]  V. Cardoso,et al.  Constraining the mass of dark photons and axion-like particles through black-hole superradiance , 2018, 1801.01420.

[50]  K. Postnov,et al.  Black hole spins in coalescing binary black holes , 2017, Monthly Notices of the Royal Astronomical Society.

[51]  I. Savukov,et al.  Experimental Constraint on an Exotic Spin- and Velocity-Dependent Interaction in the Sub-meV Range of Axion Mass with a Spin-Exchange Relaxation-Free Magnetometer. , 2017, Physical review letters.

[52]  S. N. Ivanov,et al.  Search for Axionlike Dark Matter through Nuclear Spin Precession in Electric and Magnetic Fields , 2017, 1708.06367.

[53]  Gary P. Centers,et al.  The cosmic axion spin precession experiment (CASPEr): a dark-matter search with nuclear magnetic resonance , 2017, 1707.05312.

[54]  Chris L. Fryer,et al.  The origin of low spin of black holes in LIGO/Virgo mergers , 2017 .

[55]  E. Berti,et al.  Gravitational wave searches for ultralight bosons with LIGO and LISA , 2017, 1706.06311.

[56]  E. Berti,et al.  Stochastic and Resolvable Gravitational Waves from Ultralight Bosons. , 2017, Physical review letters.

[57]  B. Acharya,et al.  Spectrum of the axion dark sector , 2017, 1706.03236.

[58]  Ilya Mandel,et al.  University of Birmingham Distinguishing Spin-Aligned and Isotropic Black Hole Populations With Gravitational Waves , 2017 .

[59]  B. Ko,et al.  First axion dark matter search with toroidal geometry , 2017, 1704.07957.

[60]  R. Lasenby,et al.  Black hole superradiance signatures of ultralight vectors , 2017, 1704.05081.

[61]  R. Webb,et al.  First Searches for Axions and Axionlike Particles with the LUX Experiment. , 2017, Physical review letters.

[62]  T. Broadhurst,et al.  Precise LIGO Lensing Rate Predictions for Binary Black Holes , 2017, 1703.06319.

[63]  T. Regimbau,et al.  Digging Deeper: Observing Primordial Gravitational Waves below the Binary-Black-Hole-Produced Stochastic Background. , 2016, Physical review letters.

[64]  V. Raymond,et al.  Parameter estimation for heavy binary-black holes with networks of second-generation gravitational-wave detectors , 2016, 1611.01122.

[65]  S. Tremaine,et al.  Ultralight scalars as cosmological dark matter , 2016, 1610.08297.

[66]  S. Lamoreaux,et al.  First Results from a Microwave Cavity Axion Search at 24  μeV. , 2016, Physical review letters.

[67]  S. Dimopoulos,et al.  Black Hole Mergers and the QCD Axion at Advanced LIGO , 2016, 1604.03958.

[68]  D. Marsh,et al.  Constraints on dark matter scenarios from measurements of the galaxy luminosity function at high redshifts , 2016, 1611.05892.

[69]  M. Lindner,et al.  Gravitational waves as a new probe of Bose–Einstein condensate Dark Matter , 2016, 1609.03939.

[70]  E. Wagenmakers,et al.  Harold Jeffreys’s default Bayes factor hypothesis tests: Explanation, extension, and application in psychology , 2016 .

[71]  Michael Purrer,et al.  Fast and accurate inference on gravitational waves from precessing compact binaries , 2016, 1604.08253.

[72]  B. A. Boom,et al.  ScholarWorks @ UTRGV ScholarWorks @ UTRGV Properties of the Binary Black Hole Merger GW150914 Properties of the Binary Black Hole Merger GW150914 , 2016 .

[73]  B. A. Boom,et al.  THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914 , 2016, 1602.03842.

[74]  Frederic A. Rasio,et al.  Erratum: Binary Black Hole Mergers from Globular Clusters: Implications for Advanced LIGO [Phys. Rev. Lett. 115, 051101 (2015)]. , 2016, Physical review letters.

[75]  F. Ohme,et al.  Can we measure individual black-hole spins from gravitational-wave observations? , 2015, 1512.04955.

[76]  M. Middleton Black Hole Spin: Theory and Observation , 2015, 1507.06153.

[77]  N. M. Brown,et al.  Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo , 2013, Living Reviews in Relativity.

[78]  F. Bauer,et al.  BlackCAT: A catalogue of stellar-mass black holes in X-ray transients , 2015, 1510.08869.

[79]  D. Marsh,et al.  Axion Cosmology , 2015, 1510.07633.

[80]  Bharath Pattabiraman,et al.  Binary Black Hole Mergers from Globular Clusters: Implications for Advanced LIGO. , 2015, Physical review letters.

[81]  A. Arvanitaki,et al.  Discovering the QCD Axion with Black Holes and Gravitational Waves , 2014, 1411.2263.

[82]  M. S. Shahriar,et al.  Characterization of the LIGO detectors during their sixth science run , 2014, 1410.7764.

[83]  P. Graff,et al.  Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library , 2014, 1409.7215.

[84]  Chris L. Fryer,et al.  DOUBLE COMPACT OBJECTS. III. GRAVITATIONAL-WAVE DETECTION RATES , 2014, 1405.7016.

[85]  K. V. Tilburg,et al.  Searching for dilaton dark matter with atomic clocks , 2014, 1405.2925.

[86]  V. Cardoso,et al.  Black holes as particle detectors: evolution of superradiant instabilities , 2014, 1411.0686.

[87]  Roy Williams,et al.  The LIGO Open Science Center , 2014, 1410.4839.

[88]  F. Rasio,et al.  THE DYNAMICAL EVOLUTION OF STELLAR BLACK HOLES IN GLOBULAR CLUSTERS , 2014, 1409.0866.

[89]  C. Broeck,et al.  Advanced Virgo: a second-generation interferometric gravitational wave detector , 2014, 1408.3978.

[90]  T. Broadhurst,et al.  Cosmic structure as the quantum interference of a coherent dark wave , 2014, Nature Physics.

[91]  M. Branchesi,et al.  Dynamics of stellar black holes in young star clusters with different metallicities – II. Black hole–black hole binaries , 2014, 1404.7147.

[92]  D. Holz,et al.  The Loudest Gravitational Wave Events , 2014, 1409.0522.

[93]  V. Raymond,et al.  Measuring the spin of black holes in binary systems using gravitational waves. , 2014, Physical review letters.

[94]  H. Kodama,et al.  Gravitational radiation from an axion cloud around a black hole: Superradiant phase , 2013, 1312.2326.

[95]  F. Barone,et al.  Advanced Virgo: a 2nd generation interferometric gravitational wave detector , 2014 .

[96]  Michael J. Pivovaroff,et al.  Working Group Report: New Light Weakly Coupled Particles , 2013 .

[97]  I. Mandel,et al.  DOUBLE COMPACT OBJECTS. II. COSMOLOGICAL MERGER RATES , 2013, 1308.1546.

[98]  D. Tsang SHATTERING FLARES DURING CLOSE ENCOUNTERS OF NEUTRON STARS , 2013, 1307.3554.

[99]  L. Duvillaret,et al.  Search for weakly interacting sub-eV particles with the OSQAR laser-based experiment: results and perspectives , 2013, 1306.0443.

[100]  B. Kocsis,et al.  Repeated bursts from relativistic scattering of compact objects in galactic nuclei , 2011, 1109.4170.

[101]  F. Haug,et al.  Search for sub-eV mass solar axions by the CERN Axion Solar Telescope with 3He buffer gas. , 2011, Physical review letters.

[102]  Bernard F. Schutz,et al.  Networks of gravitational wave detectors and three figures of merit , 2011, 1102.5421.

[103]  A. Arvanitaki,et al.  Exploring the String Axiverse with Precision Black Hole Physics , 2010, 1004.3558.

[104]  Benno Willke,et al.  The Einstein Telescope: a third-generation gravitational wave observatory , 2010 .

[105]  M. Giersz,et al.  Compact binaries in star clusters – II. Escapers and detection rates , 2010, 1008.5060.

[106]  L. Rosenberg,et al.  Search for chameleon scalar fields with the axion dark matter experiment. , 2010, Physical review letters.

[107]  L. Rosenberg,et al.  Search for hidden sector photons with the ADMX detector. , 2010, Physical review letters.

[108]  A. Ringwald,et al.  The Low-Energy Frontier of Particle Physics , 2010, 1002.0329.

[109]  D B Tanner,et al.  SQUID-based microwave cavity search for dark-matter axions. , 2009, Physical review letters.

[110]  A. Ringwald,et al.  Naturally light hidden photons in LARGE volume string compactifications , 2009, 0909.0515.

[111]  N. Kaloper,et al.  String Axiverse , 2009, 0905.4720.

[112]  Bence Kocsis,et al.  Gravitational waves from scattering of stellar-mass black holes in galactic nuclei , 2008, 0807.2638.

[113]  Frank Wilczek,et al.  Axion cosmology and the energy scale of inflation , 2008, 0807.1726.

[114]  M. Miller,et al.  MERGERS OF STELLAR-MASS BLACK HOLES IN NUCLEAR STAR CLUSTERS , 2008, 0804.2783.

[115]  S. Dolan Instability of the massive Klein-Gordon field on the Kerr spacetime , 2007, 0705.2880.

[116]  R. Peccei,et al.  The Strong CP problem and axions , 2006, hep-ph/0607268.

[117]  J. McClintock,et al.  X-Ray Properties of Black-Hole Binaries , 2006, astro-ph/0606352.

[118]  G. Bertone,et al.  Particle dark matter: Evidence, candidates and constraints , 2004, hep-ph/0404175.

[119]  R. Barkana,et al.  Fuzzy cold dark matter: the wave properties of ultralight particles. , 2000, Physical review letters.

[120]  McMillan,et al.  Black Hole Mergers in the Universe , 1999, The Astrophysical journal.

[121]  S. Dimopoulos,et al.  Macroscopic forces from supersymmetry , 1996, hep-ph/9602350.

[122]  Turner,et al.  Inflationary axion cosmology. , 1991, Physical review letters.

[123]  Michael Dine,et al.  The Not So Harmless Axion , 1983 .

[124]  Laurence F Abbott,et al.  A cosmological bound on the invisible axion , 1983 .

[125]  John Preskill,et al.  Cosmology of the invisible axion , 1983 .

[126]  S. Detweiler KLEIN-GORDON EQUATION AND ROTATING BLACK HOLES , 1980 .

[127]  F. Wilczek Problem of Strong $P$ and $T$ Invariance in the Presence of Instantons , 1978 .

[128]  S. Weinberg A new light boson , 1978 .

[129]  R. Peccei,et al.  Constraints imposed by CP conservation in the presence of pseudoparticles , 1977 .

[130]  R. Peccei,et al.  CP Conservation in the Presence of Pseudoparticles , 1977 .

[131]  C. Misner Interpretation of gravitational-wave observations. , 1972 .

[132]  W. Press,et al.  Floating Orbits, Superradiant Scattering and the Black-hole Bomb , 1972, Nature.

[133]  Y. Zel’dovich Generation of Waves by a Rotating Body , 1971 .

[134]  E. Salpeter The Luminosity function and stellar evolution , 1955 .