Post-selection free, integrated optical source of non-degenerate, polarization entangled photon pairs.

We present an integrated source of polarization entangled photon pairs in the telecom regime, which is based on type II-phasematched parametric down-conversion (PDC) in a Ti-indiffused waveguide in periodically poled lithium niobate. The domain grating - consisting of an interlaced bi-periodic structure - is engineered to provide simultaneous phase-matching of two PDC processes, and enables the direct generation of non-degenerate, polarization entangled photon pairs with a brightness of B = 7 × 10(3) pairs/(s×mW×GHz). The spatial separation of the photon pairs is accomplished by a fiber-optical multiplexer facilitating a high compactness of the overall source. Visibilities exceeding 95 % and a violation of the Bell inequality with S = 2.57±0.06 could be demonstrated.

[1]  T. Suhara,et al.  Parametric Fluorescence Generation in LiNbO3 Quasi-Phase Matched Waveguide Pumped by Semiconductor Laser , 2004 .

[2]  Onur Kuzucu,et al.  Pulsed Sagnac source of narrow-band polarization-entangled photons , 2007, 0710.5390.

[3]  H. Herrmann,et al.  Generation of non-degenerated polarization entangled photon pairs in periodically poled Ti:LiNbO3 waveguides with interlaced domains , 2011, 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC).

[4]  Jian-Wei Pan,et al.  Entanglement purification for quantum communication , 2000, Nature.

[5]  Quasi-Phase-Matched Waveguide Devices for Generation of Postselection-Free Polarization-Entangled Twin Photons , 2009, IEEE Photonics Technology Letters.

[6]  Marco Fiorentino,et al.  Spontaneous parametric down-conversion in periodically poled KTP waveguides and bulk crystals. , 2007, Optics express.

[7]  Low-loss tunable integrated acoustooptical wavelength filter in LiNbO/sub 3/ with strong sidelobe suppression , 1998, IEEE Photonics Technology Letters.

[8]  H. Herrmann,et al.  A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength , 2010, 2010 12th International Conference on Transparent Optical Networks.

[9]  F. Bussières,et al.  Fair Loss-Tolerant Quantum Coin Flipping , 2009, 0904.3945.

[10]  F. Kaneda,et al.  Entangled photon generation in two-period quasi-phase-matched parametric down-conversion. , 2012, Optics express.

[11]  Christine Silberhorn,et al.  Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks. , 2004, Physical review letters.

[12]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[13]  D. Ostrowsky,et al.  On the genesis and evolution of Integrated Quantum Optics , 2011, 1108.3162.

[14]  L. A. Ngah,et al.  High-quality polarization entanglement state preparation and manipulation in standard telecommunication channels , 2012, 1206.3809.

[15]  Toshiaki Suhara,et al.  Generation of quantum‐entangled twin photons by waveguide nonlinear‐optic devices , 2009 .

[16]  N. Gisin,et al.  Highly efficient photon-pair source using periodically poled lithium niobate waveguide , 2000 .

[17]  O. Alibart,et al.  A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength , 2010 .

[18]  S. Kurimura,et al.  Bright narrowband source of photon pairs at optical telecommunication wavelengths using a type-II periodically poled lithium niobate waveguide. , 2007, Optics express.

[19]  Generation of Polarization-Entangled Photons by Type-II Quasi-Phase-Matched Waveguide Nonlinear-Optic Device , 2007, IEEE Photonics Technology Letters.

[20]  O. Alibart,et al.  Generation of polarization-entangled photons using type-II doubly periodically poled lithium niobate waveguides , 2009 .